题意:

有N * N个格子,每一个格子里有正数或者0,从最左上角往最右下角走,仅仅能向下和向右,一共走两次(即从左上角走到右下角走两趟),把全部经过的格子的数加起来,求最大值SUM,且两次假设经过同一个格子,则最后总和SUM中该格子的计数仅仅加一次。



走两次,所以状态表示要同一时候表示两次路径。dp[i][j][k][l] 表示第一次走到i,  j,第二次走到k, l得到的最大值,这里i + j == k + l

事实上第四维是能够通过前三维算出来的,所以能够去掉

那么dp[i][j][k] 能够通过四种状态转移,(i, j - 1, k)  (i,  j - 1, k - 1) (i - 1,  j,  k) (i - 1, j, k - 1)即两次都能够选择是从上或者左边移动过来

由于i + j == k + l,所以 i + j - k是l 的位置,1 <= l <= n,即 i + j <= k + n && i + j >= k + 1 

#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
#include <bitset>
#include <fstream>
using namespace std;
//LOOP
#define FF(i, a, b) for(int i = (a); i < (b); ++i)
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FED(i, b, a) for(int i = (b); i>= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(A,value) memset(A,value,sizeof(A))
#define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++)
//OTHER
#define SZ(V) (int)V.size()
#define PB push_back
#define MP make_pair
#define all(x) (x).begin(),(x).end()
//INPUT
#define RI(n) scanf("%d", &n)
#define RII(n, m) scanf("%d%d", &n, &m)
#define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k)
#define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p)
#define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q)
#define RS(s) scanf("%s", s)
//OUTPUT
#define WI(n) printf("%d\n", n)
#define WS(n) printf("%s\n", n)
//debug
//#define online_judge
#ifndef online_judge
#define dt(a) << (#a) << "=" << a << " "
#define debugI(a) cout dt(a) << endl
#define debugII(a, b) cout dt(a) dt(b) << endl
#define debugIII(a, b, c) cout dt(a) dt(b) dt(c) << endl
#define debugIV(a, b, c, d) cout dt(a) dt(b) dt(c) dt(d) << endl
#define debugV(a, b, c, d, e) cout dt(a) dt(b) dt(c) dt(d) dt(e) << endl
#else
#define debugI(v)
#define debugII(a, b)
#define debugIII(a, b, c)
#define debugIV(a, b, c, d)
#endif #define sqr(x) (x) * (x)
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> VI;
const double eps = 1e-9;
const int MOD = 1000000007;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int maxn = 105; int dp[maxn][maxn][maxn];
int w[maxn][maxn]; int main()
{
//freopen("0.txt", "r", stdin);
int n;
while (~RI(n))
{
FE(i, 1, n) FE(j, 1, n) RI(w[i][j]);
CLR(dp, 0);
FE(i, 1, n)
{
FE(j, 1, n)
{
FE(k, 1, n)
if (i + j >= k + 1 && i + j <= k + n)
{
int t = max(dp[i][j - 1][k - 1], dp[i][j - 1][k] )
+ (k == i ? w[i][j] : w[i][j] + w[k][i + j - k]);
if (t > dp[i][j][k])
dp[i][j][k] = t;
t = max(dp[i - 1][j][k - 1], dp[i - 1][j][k])
+ (k == i ? w[i][j] : w[i][j] + w[k][i + j - k]);
if (t > dp[i][j][k])
dp[i][j][k] = t;
}
}
}
WI(dp[n][n][n]);
}
return 0;
}

neu1458 方格取数 dp解法的更多相关文章

  1. NOIP2000方格取数[DP]

    题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 ...

  2. luogu 1004 方格取数 dp

    题目链接 题意 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示: A 0 0 0 0 0 0 0 0 0 0 13 0 0 6 0 0 ...

  3. P1006 传纸条 (方格取数dp)

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运 ...

  4. hiho 1617 - 方格取数 - dp

    题目链接 描述 给定一个NxN的方格矩阵,每个格子中都有一个整数Aij.小Hi和小Ho各自选择一条从左上角格子到右下角格子的路径,要求路径中每一步只能向右或向下移动,并且两条路径不能相交(除了左上右下 ...

  5. hdu 3657 最大点权独立集变形(方格取数的变形最小割,对于最小割建图很好的题)

    转载:http://blog.csdn.net/cold__v__moon/article/details/7924269 /* 这道题和方格取数2相似,是在方格取数2的基础上的变形. 方格取数2解法 ...

  6. HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]

    题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...

  7. HDU 1565&1569 方格取数系列(状压DP或者最大流)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  8. HDU 1565 方格取数(1) 轮廓线dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...

  9. HDU1565 方格取数 &&uva 11270 轮廓线DP

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. java战斗系列-战斗MAVENPW结构

     实战中MAVEN私服的搭建 利用maven来管理项目的构建,报告和文档已经成为了我们如今的共识,不论什么开源软件基本都在使用,当然我们如今的大部分公司也基本都在使用,我把曾经使用maven的一些经 ...

  2. js匀速运动停止条件

    匀速运动,怎么让它到达指定位置时停止呢? 原理: 1,物体和目标的差值距离小于等于速度时,即停止 2,接着让物体移动位置等于目标位置 示例:匀速运动停止 html部分 <input type=& ...

  3. Streak OpenCart 商城自适应主题模板 ABC-0010

    兼容浏览器 IE9, Firefox, Safari, Opera, Chrome OpenCart版本号 OpenCart 1.5.x, OpenCart 1.5.6.x, OpenCart 1.5 ...

  4. 安装Microsoft .NET Framework 3.5 Service Pack 1回报1603错

    server升级了一下系统补丁(360安装),所有发现.net无法打开网站,提示" 因为无法创建应用程序域,因此未能运行请求.错误: 0x80070002 系统找不到指定的文件. " ...

  5. 利用Eclipse中的Maven构建Web项目(三)

    利用Eclipse中的Maven构建Web项目 1.将Maven Project转换成动态Web项目,鼠标右键项目,输入"Project Facets" 2.依据Dynamic W ...

  6. OC动态创建的问题变量数组.有数组,在阵列13要素,第一个数据包阵列,每3元素为一组,分成若干组,这些数据包的统一管理。最后,一个数组.(要动态地创建一个数组).两种方法

    <span style="font-size:24px;">//////第一种方法 //        NSMutableArray *arr = [NSMutable ...

  7. Oracle 11g 的PL/SQL函数结果缓存

    模拟Oracle性能诊断艺术做了两个试验样品.书上说的不承担RELIES_ON.果缓存的失效操作(result_cache RELIES_ON(test1,test2)).试验证明不正确,函数f1() ...

  8. Alamofire网络库进阶教程

    本章节由CocoaChina翻译组成员星夜暮晨(博客)翻译自raywenderlich:Intermediate Alamofire Tutorial,敬请勘误. 欢迎回到我们的 Alamofire ...

  9. cocos2d-x v3.2环境配置(现在3.x版本号可以配置该)

     这里介绍的是Windows环境下的cocos2d-x配置. 前提: •Windows 7+ •cocos2d-x v3.2版本号(能够在http://www.cocos2d-x.org/down ...

  10. MSMQ学习笔记

    这几天学习了一下MSMQ,虽然不能说非常深入的了解其机制与实际用法(具体项目的实现),但也要给自己的学习做个总结.学习心得如下: 一.MSMQ即微软消息队列.用于程序之间的异步消息通信,主要的机制就是 ...