TLS是由于多线程编程带来的产物,主要是为了解决线程资源局部化,具体内容网上有很多介绍。有很多地方已经支持了该功能,但有些地方没有,下面是GCC的一些介绍,反正具体看实际使用情况:

5.51 Thread-Local Storage

=========================

Thread-local storage (TLS) is a mechanism by which variables are

allocated such that there is one instance of the variable per extant

thread.  The run-time model GCC uses to implement this originates in

the IA-64 processor-specific ABI, but has since been migrated to other

processors as well.  It requires significant support from the linker

(`ld'), dynamic linker (`ld.so'), and system libraries (`libc.so' and

`libpthread.so'), so it is not available everywhere.

At the user level, the extension is visible with a new storage class

keyword: `__thread'.  For example:

__thread int i;

extern __thread struct state s;

static __thread char *p;

The `__thread' specifier may be used alone, with the `extern' or

`static' specifiers, but with no other storage class specifier.  When

used with `extern' or `static', `__thread' must appear immediately

after the other storage class specifier.

The `__thread' specifier may be applied to any global, file-scoped

static, function-scoped static, or static data member of a class.  It

may not be applied to block-scoped automatic or non-static data member.

When the address-of operator is applied to a thread-local variable, it

is evaluated at run-time and returns the address of the current thread's

instance of that variable.  An address so obtained may be used by any

thread.  When a thread terminates, any pointers to thread-local

variables in that thread become invalid.

No static initialization may refer to the address of a thread-local

variable.

In C++, if an initializer is present for a thread-local variable, it

must be a CONSTANT-EXPRESSION, as defined in 5.19.2 of the ANSI/ISO C++

standard.

See ELF Handling For Thread-Local Storage

(http://people.redhat.com/drepper/tls.pdf) for a detailed explanation of

the four thread-local storage addressing models, and how the run-time

is expected to function.

为了防止现有资源不支持TLS的情况,下面提供一种绕开__thread的一种实现。

//类文件Tls.h:

#ifndef __SAP_UTIL_TLS_H_

#define __SAP_UTIL_TLS_H_

#include <pthread.h>

#include "Tlsconf.h"

typedef struct pthread_atexit

{

int    key;                                     //线程局部变量标记

void   (*free_fn)(void*);                //线程结束时资源释放回调函数

void   *arg;                                  //线程局部变量地址

}pthread_atexit_t;

typedef std::list<pthread_atexit_t *> TlsList;          //一个线程的线程局部变量构成一条链

class Tls

{

public:

Tls();

~Tls();

static char *pthread_atexit_get_buf(variable_key_t key, int len);                                             //主要外部接口,获得线程局部变量

static int pthread_atexit_add(void *arg, variable_key_t key, void (*free_fn)(void*));                  //新的线程局部变量使用该接口进行存储

static int pthread_atexit_remove(void *arg, variable_key_t key, void (*free_fn)(void*));             //删除特定的某个线程局部变量,暂时没啥用

protected:

static void pthread_atexit_done(void *arg);                                                                           //线程结束回调函数,用于回收该线程所有线程局部变量资源

static void pthread_atexit_init(void);                                                                                     //设置线程结束时的回调函数

static void pthread_atexit_release(void *pbuf);                                                                      //资源释放函数

static char *pthread_atexit_get_buf_from_list(TlsList *ptlslist, variable_key_t key);                   //从线程局部变量链表当中找到key值的变量

protected:

static pthread_key_t    _pthread_atexit_key;                                                                        //线程存储键值,每个线程通过它来读取数据链

static pthread_once_t   _pthread_atexit_control_once;                                                          //初始化状态标志,pthread_once使用

};

#endif

#endif

//外部接口声明tls_api.h:

#ifndef _TLS_API_H_

#define _TLS_API_H_

#include "Tlsconf.h"

#ifdef __cplusplus

extern "C"

{

#endif

char* get_buf(variable_key_t key, int len);

#ifdef __cplusplus

}

#endif

#endif

//参数键值表,用于标记哪个函数中的哪个参数Tlsconf.h:

#ifndef _TLS_CONF_H

#define _TLS_CONF_H

typedef enum

{

ENUM_0,

ENUM_1,

ENUM_2,

ENUM_3,

ENUM_4,

ENUM_5,

ENUM_6,

ENUM_7,

}variable_key_t;

#endif

//类实现及外部接口Tls.cpp:

#include <sys/syscall.h>
#include <list>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "Tls.h"
#include "Tlsconf.h"
#include "tls_api.h"
using namespace std;

//#define gettid() syscall(__NR_gettid)
#define TLS_OUT_OF_INDEXES          0xffffffff

pthread_key_t   Tls::_pthread_atexit_key = TLS_OUT_OF_INDEXES;
pthread_once_t  Tls::_pthread_atexit_control_once = PTHREAD_ONCE_INIT;

Tls::Tls()
{
 //_pthread_atexit_key = TLS_OUT_OF_INDEXES;
 //_pthread_atexit_control_once = PTHREAD_ONCE_INIT;
}

Tls::~Tls()
{
}

char* Tls::pthread_atexit_get_buf_from_list(TlsList *ptlslist, variable_key_t key)
{

pthread_atexit_t *id_ptr=NULL;   
 
     if (NULL == ptlslist)
     {
          return NULL;
     }

 for (TlsList::iterator iter=ptlslist->begin(); iter !=ptlslist->end(); ++iter)    
  {         
           id_ptr = *iter;         
       if (id_ptr == NULL)             
            continue;         
        if (key == id_ptr->key)                                                 //通过key值区分变量
          {
               return (char*)(id_ptr->arg);
          }
     }

return NULL;

}

char* Tls::pthread_atexit_get_buf(variable_key_t key, int len)
{
     TlsList* id_list;
     char*    ptrtmp = NULL;
     int      iret   = -1;
 
     if (len <= 0)
    {
        return NULL;
    }

pthread_once(&_pthread_atexit_control_once, pthread_atexit_init);                 //该函数只调用一次pthread_atexit_init
    if (_pthread_atexit_key == (pthread_key_t) TLS_OUT_OF_INDEXES)    
    {        
        printf("%s(%d): _pthread_atexit_key(%d) invalid\n", __func__, __LINE__, _pthread_atexit_key);        
        return NULL;     
    }

id_list = (TlsList*) pthread_getspecific(_pthread_atexit_key);
    ptrtmp = pthread_atexit_get_buf_from_list(id_list, key);
    if (NULL != ptrtmp)
    {
        return ptrtmp;
    }
 
    ptrtmp = (char*)malloc(len);
    if (NULL == ptrtmp)
   {
       return NULL;
   }
   memset(ptrtmp, 0, len);
 
   iret = pthread_atexit_add(ptrtmp, key, pthread_atexit_release);
   if (-1 == iret)
   {
       free(ptrtmp);
       return NULL;
   }

return ptrtmp;
}

void Tls::pthread_atexit_done(void *arg)
{    
    TlsList *id_list = (TlsList*) arg;    
    pthread_atexit_t *id_ptr=NULL;    
    //printf("invoke Tls::pthread_atexit_done(): tid=%ld\n",gettid());    
    for(TlsList::iterator iter=id_list->begin(); iter !=id_list->end(); ++iter)    
    {        
       id_ptr = *iter;
       if (id_ptr == NULL)            
         continue;        
       printf("pthread(%u) realease resouce %d!\n", pthread_self(), id_ptr->key);
       if (id_ptr->free_fn)            
       id_ptr->free_fn(id_ptr->arg);        
       delete id_ptr;    
    }

delete id_list;
}

void Tls::pthread_atexit_init(void)
{    
    pthread_key_create(&_pthread_atexit_key, pthread_atexit_done);
}

void Tls::pthread_atexit_release(void *pbuf)
{
    if (NULL == pbuf)
    {
    return;
    }

free((char*)pbuf);
    return;
}

int Tls::pthread_atexit_add(void *arg, variable_key_t key, void (*free_fn)(void*))
{    
    const char *myname = "pthread_atexit_add";    
    pthread_atexit_t *id;    
    TlsList *id_list;      
    if (arg == NULL)    
    {        
       return 0;     
    }        
 
    id = new pthread_atexit_t;    
    if (id == NULL)     
    {        
       printf("%s(%d): new pthread_atexit_t error\n", myname, __LINE__);
       return -1;    
    }

id->key = key;
    id->free_fn = free_fn;
    id->arg = arg;      
    id_list = (TlsList*) pthread_getspecific(_pthread_atexit_key);    
    if (id_list == NULL)    
    {        
        id_list = new TlsList();         
      if (pthread_setspecific(_pthread_atexit_key, id_list) != 0)         
      {             
          printf("%s(%d): pthread_setspecific error, key(%d)\n", myname, __LINE__, _pthread_atexit_key);             
          goto errExit;

  }    
    }
  id_list->push_back(id);

printf("pthread(%u) get  resouce %d!\n", pthread_self(), id->key);
    return 0;
 
errExit:
    if (id)
    {
      delete id;
    }

if (id_list)
    {
      delete id_list;
    }

return -1;
}

int Tls::pthread_atexit_remove(void *arg, variable_key_t key, void (*free_fn)(void*))
{     
   const char *myname = "pthread_atexit_remove";     
   TlsList *id_list;

   if (arg == NULL)     
   {         
      return (-1);     
   }     
 
   if (_pthread_atexit_key == (pthread_key_t) TLS_OUT_OF_INDEXES)     
   {         
      printf("%s(%d): _pthread_atexit_key(%d)  invalid\n", myname, __LINE__, _pthread_atexit_key);         
      return (-1);    
   }

   id_list = (TlsList*) pthread_getspecific(_pthread_atexit_key);    
   if (id_list == NULL)     
   {         
      printf("%s(%d): _pthread_atexit_key(%d) no exist in tid(%lu)\n", myname, __LINE__, _pthread_atexit_key,(unsigned long) pthread_self());         
      return (-1);     
   }

  pthread_atexit_t *id_ptr =NULL;     
   TlsList::iterator iter=id_list->begin();     
   for(; iter !=id_list->end(); ++iter)     
   {         
      id_ptr = *iter;         
      if (id_ptr == NULL)             
         continue;         
      if (id_ptr->free_fn == free_fn && id_ptr->arg == arg)         
      {             
         break;         
      }     
   }

  if(id_ptr != NULL)     
   {         
      id_list->erase(iter);         
      delete id_ptr;    
   }

   return (0);
}

char* get_buf(variable_key_t key, int len)
{
   static Tls tls;

  return tls.pthread_atexit_get_buf(key, len);
}

这个类里用到了几个令人蛋疼的库函数,初看之下还以为是“山寨”的。不过幸好man都能找到,每个函数的功能就不具体介绍了,很多地方都有介绍的。

这个类主要采用了这样的一种结构:每个线程拥有一个TlsList链,它存储了该线程使用的所有的线程局部变量。每个线程可以通过pthread_setspecific存储TlsList,也可以通过pthread_getspecific读出TlsList,进而通过variable_key_t key来访问TlsList中的数据。Key与线程无关,每个函数中的每个线程局部变量需要拥有一个独立的key值。因此,在实际使用时一个增加一个线程局部变量就需要在Tlsconf.h中加一个字段,同样每删除一个变量都需要将Tlsconf.h中对应的key值删除。线程在结束时,会自动调用回调函数,遍历该线程的TlsList,调用每个资源的清理回调函数。

Tls类中基本所有的成员都是静态变量,一来是为了方便,因为成员函数里用到了其它成员函数的地址,不用静态成员不太好处理;二来这样也已经满足使用需求了,具体为什么,大家可以自己思考一下,欢迎一起讨论。

下面是测试函数,主要是看内存的申请、使用及内存释放:

//Test4:

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include "pthread.h"

#include "TLS/Tlsconf.h"

#include "TLS/tls_api.h"

#define ERROR  -1

#define OK     0

void test_fn2(int a)

{

char  *psz = (char*)get_buf(ENUM_1, 32);

printf("thread(%u) psz: %s\n", pthread_self(), psz);

memset(psz, 0, 32);

sprintf(psz, "%u_%d", pthread_self(), a);

return;

}

void* test_fn_main2(void* arg)

{

int i = 0;

for (i = 0; i < 3; i++)

{

test_fn2(i);

sleep(1);

}

return;

}

void test_fn1(void)

{

int  *reti = (int*)get_buf(ENUM_0, sizeof(int));

printf("thread(%u) reti: %d\n", pthread_self(), *reti);

(*reti)++;

return;

}

void* test_fn_main1(void* arg)

{

int i = 0;

for (i = 0; i < 3; i++)

{

test_fn1();

sleep(1);

}

return;

}

int main()

{

int iRet = ERROR;

int i = 0;

pthread_t   tid;

printf("test start!\n");

for (i = 0; i < 5; i++)

{

iRet = pthread_create(&tid, NULL, test_fn_main1, NULL);

if (OK != iRet)

{

printf("pthread_create error!\n");

return ERROR;

}

iRet = pthread_create(&tid, NULL, test_fn_main2, NULL);

if (OK != iRet)

{

printf("pthread_create error!\n");

return ERROR;

}

}

sleep(20);

return OK;

}

//result

[root@localhost 20130713]# ./tls4

test start!

pthread(3086523280) get  resouce 0!

thread(3086523280) reti: 0

pthread(3076033424) get  resouce 1!

thread(3076033424) psz:

pthread(3065543568) get  resouce 0!

thread(3065543568) reti: 0

pthread(3055053712) get  resouce 1!

thread(3055053712) psz:

pthread(3044563856) get  resouce 0!

thread(3044563856) reti: 0

pthread(3034074000) get  resouce 1!

thread(3034074000) psz:

pthread(3023584144) get  resouce 0!

thread(3023584144) reti: 0

pthread(3013094288) get  resouce 1!

thread(3013094288) psz:

pthread(3002604432) get  resouce 0!

thread(3002604432) reti: 0

pthread(2992114576) get  resouce 1!

thread(2992114576) psz:

thread(3086523280) reti: 1

thread(3076033424) psz: 3076033424_0

thread(3065543568) reti: 1

thread(3055053712) psz: 3055053712_0

thread(3044563856) reti: 1

thread(3034074000) psz: 3034074000_0

thread(3023584144) reti: 1

thread(3013094288) psz: 3013094288_0

thread(3002604432) reti: 1

thread(2992114576) psz: 2992114576_0

thread(3086523280) reti: 2

thread(3076033424) psz: 3076033424_1

thread(3065543568) reti: 2

thread(3055053712) psz: 3055053712_1

thread(3044563856) reti: 2

thread(3034074000) psz: 3034074000_1

thread(3023584144) reti: 2

thread(3013094288) psz: 3013094288_1

thread(3002604432) reti: 2

thread(2992114576) psz: 2992114576_1

pthread(3086523280) realease resouce 0!

pthread(3076033424) realease resouce 1!

pthread(3065543568) realease resouce 0!

pthread(3055053712) realease resouce 1!

pthread(3044563856) realease resouce 0!

pthread(3034074000) realease resouce 1!

pthread(3023584144) realease resouce 0!

pthread(3013094288) realease resouce 1!

pthread(3002604432) realease resouce 0!

pthread(2992114576) realease resouce 1!

//Test5:

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include "pthread.h"

#include "TLS/Tlsconf.h"

#include "TLS/tls_api.h"

#define ERROR  -1

#define OK     0

void test_fn2(int a)

{

char  *psz = (char*)get_buf(ENUM_1, 32);

printf("thread(%u) psz: %s\n", pthread_self(), psz);

memset(psz, 0, 32);

sprintf(psz, "%u_%d", pthread_self(), a);

return;

}

void test_fn1(int a)

{

int  *reti = (int*)get_buf(ENUM_0, sizeof(int));

printf("thread(%u) reti: %d\n", pthread_self(), *reti);

(*reti)++;

test_fn2(a);

return;

}

void* test_fn_main1(void* arg)

{

int i = 0;

for (i = 0; i < 3; i++)

{

test_fn1(i);

sleep(1);

}

return;

}

int main()

{

int iRet = ERROR;

int i = 0;

pthread_t   tid;

printf("test start!\n");

for (i = 0; i < 5; i++)

{

iRet = pthread_create(&tid, NULL, test_fn_main1, NULL);

if (OK != iRet)

{

printf("pthread_create error!\n");

return ERROR;

}

}

sleep(20);

return OK;

}

//result

[root@localhost 20130713]# ./tls5

test start!

pthread(3086138256) get  resouce 0!

thread(3086138256) reti: 0

pthread(3086138256) get  resouce 1!

thread(3086138256) psz:

pthread(3075648400) get  resouce 0!

thread(3075648400) reti: 0

pthread(3075648400) get  resouce 1!

thread(3075648400) psz:

pthread(3065158544) get  resouce 0!

thread(3065158544) reti: 0

pthread(3065158544) get  resouce 1!

thread(3065158544) psz:

pthread(3054668688) get  resouce 0!

thread(3054668688) reti: 0

pthread(3054668688) get  resouce 1!

thread(3054668688) psz:

pthread(3044178832) get  resouce 0!

thread(3044178832) reti: 0

pthread(3044178832) get  resouce 1!

thread(3044178832) psz:

thread(3086138256) reti: 1

thread(3086138256) psz: 3086138256_0

thread(3075648400) reti: 1

thread(3075648400) psz: 3075648400_0

thread(3065158544) reti: 1

thread(3065158544) psz: 3065158544_0

thread(3054668688) reti: 1

thread(3054668688) psz: 3054668688_0

thread(3044178832) reti: 1

thread(3044178832) psz: 3044178832_0

thread(3086138256) reti: 2

thread(3086138256) psz: 3086138256_1

thread(3075648400) reti: 2

thread(3075648400) psz: 3075648400_1

thread(3065158544) reti: 2

thread(3065158544) psz: 3065158544_1

thread(3054668688) reti: 2

thread(3054668688) psz: 3054668688_1

thread(3044178832) reti: 2

thread(3044178832) psz: 3044178832_1

pthread(3086138256) realease resouce 0!

pthread(3086138256) realease resouce 1!

pthread(3075648400) realease resouce 0!

pthread(3075648400) realease resouce 1!

pthread(3065158544) realease resouce 0!

pthread(3065158544) realease resouce 1!

pthread(3054668688) realease resouce 0!

pthread(3054668688) realease resouce 1!

pthread(3044178832) realease resouce 0!

pthread(3044178832) realease resouce 1

其中有个问题,主线程的资源最后没有被释放,这是不是问题呢?大家可以思考一下?

参考:http://www.searchtb.com/2012/09/tls.html

替换__thread的一种方式,实现TLS功能的更多相关文章

  1. Python3中发邮件emal(明文/SSL/TLS三种方式)

    #!/usr/bin/env python #-*- coding:utf-8 -*- #Author:lzd import smtplib from email.mime.text import M ...

  2. js replace 全局替换 以表单的方式提交参数 判断是否为ie浏览器 将jquery.qqFace.js表情转换成微信的字符码 手机端省市区联动 新字体引用本地运行可以获得,放到服务器上报404 C#提取html中的汉字 MVC几种找不到资源的解决方式 使用Windows服务定时去执行一个方法的三种方式

    js replace 全局替换   js 的replace 默认替换只替换第一个匹配的字符,如果字符串有超过两个以上的对应字符就无法进行替换,这时候就要进行一点操作,进行全部替换. <scrip ...

  3. Windows10-UWP中设备序列显示不同XAML的三种方式[3]

    阅读目录: 概述 DeviceFamily-Type文件夹 DeviceFamily-Type扩展 InitializeComponent重载 结论 概述 Windows10-UWP(Universa ...

  4. .NET 实现并行的几种方式(四)

    本随笔续接:.NET 实现并行的几种方式(三) 八.await.async - 异步方法的秘密武器 1) 使用async修饰符 和 await运算符 轻易实现异步方法 前三篇随笔已经介绍了多种方式.利 ...

  5. 【整理】Linux下中文检索引擎coreseek4安装,以及PHP使用sphinx的三种方式(sphinxapi,sphinx的php扩展,SphinxSe作为mysql存储引擎)

          一,软件准备 coreseek4.1 (包含coreseek测试版和mmseg最新版本,以及测试数据包[内置中文分词与搜索.单字切分.mysql数据源.python数据源.RT实时索引等测 ...

  6. 预处理(防止sql注入的一种方式)

    <!--- 预处理(预编译) ---><?php/* 防止 sql 注入的两种方式: 1. 人为提高代码的逻辑性,使其变得更严谨,滴水不漏. 比如说 增加判断条件,增加输入过滤等,但 ...

  7. Android 数据存储五种方式

    1.概述 Android提供了5种方式来让用户保存持久化应用程序数据.根据自己的需求来做选择,比如数据是否是应用程序私有的,是否能被其他程序访问,需要多少数据存储空间等,分别是: ① 使用Shared ...

  8. C#-WinForm-打开其他窗体的三种方式-Show()、设置Owner()、ShowDialog()

    打开其他窗体的三种方式 Show - 例如登入界面进入主页面,直接将主页面展示出来,两个窗体互不影响 public partial class Form1 : Form { public Form1( ...

  9. 简介C#读取XML的两种方式

    简介C#读取XML的两种方式 作者: 字体:[增加 减小] 类型:转载 时间:2013-03-03 在程序中访问进而操作XML文件一般有两种模型,分别是使用DOM(文档对象模型)和流模型,使用DOM的 ...

随机推荐

  1. B二分法

    <span style="color:#330099;">/* B - 二分法 基金会 Time Limit:1000MS Memory Limit:65536KB 6 ...

  2. 【Java编码准则】の #12不要使用不安全或者强度弱的加密算法

    安全性要求高的应用程序必须避免使用不安全的或者强度弱的加密算法,现代计算机的计算能力使得攻击者通过暴力破解能够攻破强度弱的算法.比如,数据加密标准算法DES是极度不安全的,使用类似EFF(Electr ...

  3. 使用collectd与visage收集kvm虚拟机性能实时图形

    软件功能: 通过collectd软件来监控收集kvm虚拟机的性能数据,包含cpu,memory.磁盘IO.网络流量等 通过visage软件将收集到的数据绘制图形. 安装: 系统环境:ubuntu12. ...

  4. Javascript规范

    本文地址: http://www.hicss.net/evolve-your-javascript-code/ 方才在程序里看到一段JS代码,写法极为高明,私心想着若是其按照规范来写,定可培养对这门语 ...

  5. asp.net mvc上传头像加剪裁功能

    原文:asp.net mvc上传头像加剪裁功能 正好项目用到上传+剪裁功能,发上来便于以后使用. 我不能告诉你们其实是从博客园扒的前台代码,哈哈. 前端是jquery+fineuploader+jqu ...

  6. JS实现倒计时网页自动跳转(如404页面经常使用到的)

    在web前端设计中,我们经常会遇到需要实现页面倒计时跳转的功能,例如在404页面中也会经常使用到此功能,那么如何实现呢,其实实现方法很简单,实现代码如下:<title>JS倒计时网页自动跳 ...

  7. JS分析URL字符串,取得参数名,AJAX传参请求代码示例

    //当前页面URL中参数分析函数,正则校验 function getQueryString(name) { var reg = new RegExp("(^|&)" + n ...

  8. sql分页查询公式

    分页查询公式: select top PageRow(每页显示的数据行数) from 表名 where 主键  not in(select top PageRow*(当前页数-1) 主键  from ...

  9. Appium Server源码分析之作为Bootstrap客户端

    Appium Server拥有两个主要的功能: 它是个http服务器,它专门接收从客户端通过基于http的REST协议发送过来的命令 他是bootstrap客户端:它接收到客户端的命令后,需要想办法把 ...

  10. Java阅读word程序说明文件

    完成office文件操作可以帮助apache.poi包(我用poi-3.10-FINAL),导入对应的jar包(最好所有导入) 以下的程序演示了一些操作word的过程,具体的函数功能能够查看此包的官方 ...