T-shirts Distribution
1 second
256 megabytes
standard input
standard output
The organizers of a programming contest have decided to present t-shirts to participants. There are six different t-shirts sizes in this problem: S, M, L, XL, XXL, XXXL (sizes are listed in increasing order). The t-shirts are already prepared. For each size from S to XXXLyou are given the number of t-shirts of this size.
During the registration, the organizers asked each of the n participants about the t-shirt size he wants. If a participant hesitated between two sizes, he could specify two neighboring sizes — this means that any of these two sizes suits him.
Write a program that will determine whether it is possible to present a t-shirt to each participant of the competition, or not. Of course, each participant should get a t-shirt of proper size:
- the size he wanted, if he specified one size;
- any of the two neibouring sizes, if he specified two sizes.
If it is possible, the program should find any valid distribution of the t-shirts.
The first line of the input contains six non-negative integers — the number of t-shirts of each size. The numbers are given for the sizesS, M, L, XL, XXL, XXXL, respectively. The total number of t-shirts doesn't exceed 100 000.
The second line contains positive integer n (1 ≤ n ≤ 100 000) — the number of participants.
The following n lines contain the sizes specified by the participants, one line per participant. The i-th line contains information provided by the i-th participant: single size or two sizes separated by comma (without any spaces). If there are two sizes, the sizes are written in increasing order. It is guaranteed that two sizes separated by comma are neighboring.
If it is not possible to present a t-shirt to each participant, print «NO» (without quotes).
Otherwise, print n + 1 lines. In the first line print «YES» (without quotes). In the following n lines print the t-shirt sizes the orginizers should give to participants, one per line. The order of the participants should be the same as in the input.
If there are multiple solutions, print any of them.
0 1 0 1 1 0
3
XL
S,M
XL,XXL
YES
XL
M
XXL
1 1 2 0 1 1
5
S
M
S,M
XXL,XXXL
XL,XXL
NO
分析:因为1个人最多选两件型号相邻的T恤,所以直接从小到大的型号贪心即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<ll,int>
#define Lson L, mid, ls[rt]
#define Rson mid+1, R, rs[rt]
#define sys system("pause")
const int maxn=1e5+;
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
inline ll read()
{
ll x=;int f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,k,t,c[];
struct node
{
string a,b;
int ca;
}op[maxn];
string d;
bool flag=true;
string ca[]={"S","M", "L", "XL", "XXL", "XXXL"};
int gao(string a)
{
int i;
rep(i,,)if(a==ca[i])return i+;
}
vi v[];
int main()
{
int i,j;
rep(i,,)scanf("%d",&c[i]);
scanf("%d",&n);
rep(i,,n)
{
cin>>d;
int xx=;
for(j=;d[j];j++)
{
if(d[j]==',')
{
xx=j;
break;
}
}
if(xx)
{
op[i].a=d.substr(,xx);
op[i].b=d.substr(xx+);
v[gao(d.substr(,xx))].pb(i);
}
else
{
if(--c[gao(d)]<)
{
flag=false;
break;
}
op[i].a=d;
op[i].ca=;
}
}
for(i=;i<=;i++)
{
for(int x:v[i])
{
if(c[i]>)
{
c[i]--;
op[x].ca=;
}
else if(c[i+]>)c[i+]--,op[x].ca=;
else
{
flag=false;
break;
}
}
}
if(flag)
{
puts("YES");
rep(i,,n)
{
if(op[i].ca==)cout<<op[i].a<<endl;
else cout<<op[i].b<<endl;
}
}
else puts("NO");
//system("Pause");
return ;
}
T-shirts Distribution的更多相关文章
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- CloudSim4.0报错NoClassDefFoundError,Caused by: java.lang.ClassNotFoundException: org.apache.commons.math3.distribution.UniformRealDistribution
今天下载了CloudSim 4.0的代码,运行其中自带的示例程序,结果有一部分运行错误: 原因是找不到org.apache.commons.math3.distribution.UniformReal ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- distribution 中一直在运行 waitfor delay @strdelaytime 语句
Replication 自动创建来一个 Job:Replication monitoring refresher for distribution,这个Agent执行一个sp: dbo.sp_repl ...
- Distribution2:Distribution Writer
Distribution Writer 调用Statement Delivery 存储过程,将Publication的改变同步到Subscriber中.查看Publication Properties ...
- Distribution1:Distribution Reader
在transactional replication中,在publication中执行了一个更新,例如:update table set col=? Where ?,如果table中含有大量的数据行, ...
- 设置Distribution clean up 每次删除Command的数量
Replication Job “Distribution clean up: distribution” 默认设置是,每10minutes运行一次,每次删除2000个Command.这对于有1.9亿 ...
- Your account already has a valid iOS Distribution certificate!
iOS 发布提交出现:Your account already has a valid iOS Distribution certificate!问题解决 转载的链接 http://www.jia ...
- Replication-Replication Distribution Subsystem: agent xxxxxx failed. Column names in each table must be unique
最近遇到一个关于发布订阅(Replication)的奇葩问题,特此记录一下这个案例.我们一SQL SERVER数据库服务器出现大量告警.告警信息如下所示: DESCRIPTION: Replicati ...
- SQL Server删除distribution数据库
在数据库服务器删除复制(发布订阅)后,如何删除掉数据库distribution呢?如果你通过SSMS工具去删除数据库distribution,你会发现根本没有删除选项. 下面介绍一下删除distrib ...
随机推荐
- CKEditor 案例
官网下载: http://ckeditor.com/download 将下载的ckeditor整个文件放入项目中 在页面中引用ckeditor.js,并用新建一个<textarea>再建一 ...
- JavaEE XML 基础知识
JavaEE XML 基础知识 @author ixenos 1. XML开头都需要一个声明 <?和?>表明这是一个处理指令 <?xml version=”1.0” encod ...
- 线程的实现方法以及区别 extends Thread、implements Runable
/** 线程存在于进程当中,进程由系统创建. 创建新的执行线程有两种方法 注意: 线程复写run方法,然后用start()方法调用,其实就是调用的run()方法,只是如果直接启动run()方法, ...
- Openjudge-计算概论(A)-角谷猜想
描述: 所谓角谷猜想,是指对于任意一个正整数,如果是奇数,则乘3加1,如果是偶数,则除以2,得到的结果再按照上述规则重复处理,最终总能够得到1.如,假定初始整数为5,计算过程分别为16.8.4.2.1 ...
- UITextField的属性设置
1.背景颜色 field.backgoundColor = [UIColor redColor]; 2.设置field文字 field.text = @"输入文字"; 3.设置fi ...
- Python 邮件发送
python发送各类邮件的主要方法 python中email模块使得处理邮件变得比较简单,今天着重学习了一下发送邮件的具体做法,这里写写自己的的心得,也请高手给些指点. 一.相关模块介绍 ...
- 网络通信框架Apache MINA
Apache MINA(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络 ...
- genymotion模拟器配置Genymotion-ARM-Translation 兼容包
前提是你的adb的环境已经配置正确,不知道怎么配置的可参考http://jingyan.baidu.com/article/17bd8e52f514d985ab2bb800.html 如果还不成功的话 ...
- Oracle 正则 一行转多行
, LEVEL, 'i') AS STR,bjdm FROM valueWeekInfo CONNECT ; 可以将 bjdm 换成 '01,02,03,04' , valueWeekInfo 换成d ...
- 网络传输中的三张表,MAC地址表、ARP缓存表以及路由表
一:MAC地址表详解 说到MAC地址表,就不得不说一下交换机的工作原理了,因为交换机是根据MAC地址表转发数据帧的.在交换机中有一张记录着局域网主机MAC地址与交换机接口的对应关系的表,交换机就是根据 ...