前言

最后一次是出了素数的问题C语言解决题目(面试),当时用了最粗暴的算法。回来细致參考资料,事实上答案有非常多种:

1,小学生版本号:

推断 x 是否为质数,就从 2 一直算到 x-1。
static rt_uint32_t array1[ARRAY_LEN];
void func1(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array1[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 2; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 1; i <= x; i++)
{
if (x % i == 0)
{
y++;
}
}
if (y == 2)
{
z++;
array1[x - 1] = x;
}
}
array1[0] = 1;
}

2,小学生毕业版:

x 假设有质因数,肯定会小于等于 x/2。所以捏。就从 2 一直到 x/2 就可以。
static rt_uint32_t array2[ARRAY_LEN];
void func2(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array2[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array2[x - 1] = x;
}
}
array2[0] = 1;
array2[1] = 2;
}

3,初中生版:

除了2以外的质因数都是奇数。

所以算从3開始一直到 x/2 的全部奇数。

static rt_uint32_t array3[ARRAY_LEN];
void func3(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array3[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array3[x - 1] = x;
}
}
array3[0] = 1;
array3[1] = 2;
}

4,高中生版:

事实上仅仅要从 2 一直尝试到根号x。就能够了。由于x仅仅要有因数必然有一个因数小于等于根号x。

static rt_uint32_t array4[ARRAY_LEN];
void func4(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array4[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array4[x - 1] = x;
}
}
array4[0] = 1;
array4[1] = 2;
}

5,本科生版:

把上面的版本号都综合起来
static rt_uint32_t array5[ARRAY_LEN];
void func5(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array5[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array5[x - 1] = x;
}
}
array5[0] = 1;
array5[1] = 2;
}

6。本科生毕业版本号:

就是当i是质(素)数的时候,i的全部的倍数必定是合数。

假设i已经被推断不是质数了,那么再找到i后面的质数来把这个质

数的倍数筛掉。

static rt_uint32_t array6[ARRAY_LEN];
void func6(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i += 2)
{
array6[i - 1] = i;
} for (rt_uint32_t i = 3; i < sqrt(ARRAY_LEN); i+=2)
{
if (array6[i-1])
{
for(rt_uint32_t j=i<<2;j<=ARRAY_LEN;j+=i)
{
array6[j] = 0;
}
}
}
array6[1] = 2;
}

总结

分析了6个算法在我的嵌入式平台执行结果:
定义ARRAY_LEN = 1000;    
func1 2513922
func2 221563
func3 213926
func4 762945
func5 674993
func6 14663
我们能够看到func4、func5并没有我们想象的那么节省时间,我想问题主要出在sqrt上面;sqrt本身是比較耗时的计算,然后func4与func5调用sqrt的次数又比較多;所以导致结果不太乐观。

当然假设把ARRAY_LEN调大。可能结果又会不一样


至此,也就仅仅是我本科毕业的水准了,后面还有更好的纯C算法可以告诉我。

版权声明:本文博客原创文章。博客,未经同意,不得转载。

C语言求素数的算法的更多相关文章

  1. c语言求素数以及改进算法

    代码需要使用c99编译 #include <stdio.h> #include <stdlib.h> #include <math.h> //是否为素数 //从2到 ...

  2. 蓝桥杯 算法训练 Torry的困惑(基本型)(水题,筛法求素数)

    算法训练 Torry的困惑(基本型) 时间限制:1.0s   内存限制:512.0MB      问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.Torry突 ...

  3. c语言求回文数的三种算法的描述

    c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...

  4. 常见算法:C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,当中一个最小的公倍数是他们的最小公倍数,相同地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...

  5. C语言求最小公倍数和最大公约数三种算法(经典)

    把以前写的一些经验总结汇个总,方便给未来的学弟学妹们做个参考! --------------------------永远爱你们的:Sakura 最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们 ...

  6. 链表插入和删除,判断链表是否为空,求链表长度算法的,链表排序算法演示——C语言描述

    关于数据结构等的学习,以及学习算法的感想感悟,听了郝斌老师的数据结构课程,其中他也提到了学习数据结构的或者算法的一些个人见解,我觉的很好,对我的帮助也是很大,算法本就是令人头疼的问题,因为自己并没有学 ...

  7. C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...

  8. 转载 筛子算法之golang实现求素数解析

    package main import "fmt" // Send the sequence 2, 3, 4, ... to channel 'ch'. func generate ...

  9. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

随机推荐

  1. MySQL外键约束OnDelete和OnUpdate的使用

    On Delete和On Update都有Restrict,No Action, Cascade,Set Null属性.现在分别对他们的属性含义做个解释. ON DELETE restrict(约束) ...

  2. VIM命令集

    Command Action Notes vim file +54 open file and go to line 54 any : command can be run using + on co ...

  3. Java调用摄像头截图

    使用webcam-capture替换JMF调用摄像头 最近有个需要通过java调用摄像头,并截图的需求,在网上找了下资料,大部分是用一个叫jmf的库,但是jmf已经几百年没有更新,用起来各种问题.后来 ...

  4. 后台使用oracle前台使用easyui分页机制

    前台easyui 的datagrid中设置分页属性: pagination:true,//显示分页 pagePosition:'bottom',//分页栏位置 both 上下 bottom.top p ...

  5. javascript UniqueID属性

        在Web页中的每一个HTML元素都一个ID属性,ID作为其标示,在我们的普通理解中它应该是unique的.但是HTML元素的ID属性是可写的,这就造成了我们非常可能人为的使ID的反复.按么假设 ...

  6. java反射中Method类invoke方法的使用方法

    package com.zsw.test; import java.lang.reflect.Method;import java.lang.reflect.InvocationTargetExcep ...

  7. OpenCV中的SVM參数优化

    SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv ...

  8. 2012天津C题

    行李箱上的密码锁大家都知道, 现在给我们长度为n(n<=1000)的两个密码串,每次可以转动连续的1->3个字符1格,问最少多少次可以使得第一个串变成第二个串 经历了搜索,贪心,的思路后, ...

  9. 使用oracle数据库,多用户同时对一个表进行增加,删除,修改,查看等操作,会不会有影响?

    使用oracle数据库,多用户同时对一个表进行增加,删除,修改,查看等操作,会不会有影响? 1.问题:各操作间或者性能上会不会有影响? 如果有该如何解决? 多用户操作的影响主要是回锁定记录,oracl ...

  10. 工作经常使用的SQL整理,实战篇(二)

    原文:工作经常使用的SQL整理,实战篇(二) 工作经常使用的SQL整理,实战篇,地址一览: 工作经常使用的SQL整理,实战篇(一) 工作经常使用的SQL整理,实战篇(二) 工作经常使用的SQL整理,实 ...