前言

最后一次是出了素数的问题C语言解决题目(面试),当时用了最粗暴的算法。回来细致參考资料,事实上答案有非常多种:

1,小学生版本号:

推断 x 是否为质数,就从 2 一直算到 x-1。
static rt_uint32_t array1[ARRAY_LEN];
void func1(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array1[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 2; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 1; i <= x; i++)
{
if (x % i == 0)
{
y++;
}
}
if (y == 2)
{
z++;
array1[x - 1] = x;
}
}
array1[0] = 1;
}

2,小学生毕业版:

x 假设有质因数,肯定会小于等于 x/2。所以捏。就从 2 一直到 x/2 就可以。
static rt_uint32_t array2[ARRAY_LEN];
void func2(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array2[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array2[x - 1] = x;
}
}
array2[0] = 1;
array2[1] = 2;
}

3,初中生版:

除了2以外的质因数都是奇数。

所以算从3開始一直到 x/2 的全部奇数。

static rt_uint32_t array3[ARRAY_LEN];
void func3(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array3[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= x / 2; i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array3[x - 1] = x;
}
}
array3[0] = 1;
array3[1] = 2;
}

4,高中生版:

事实上仅仅要从 2 一直尝试到根号x。就能够了。由于x仅仅要有因数必然有一个因数小于等于根号x。

static rt_uint32_t array4[ARRAY_LEN];
void func4(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array4[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x++)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array4[x - 1] = x;
}
}
array4[0] = 1;
array4[1] = 2;
}

5,本科生版:

把上面的版本号都综合起来
static rt_uint32_t array5[ARRAY_LEN];
void func5(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i++)
{
array5[i - 1] = 0;
} rt_uint32_t x, y = 0, z = 0;
rt_uint32_t i = 0;
for (x = 3; x <= ARRAY_LEN; x += 2)
{
y = 0;
for (i = 2; i <= sqrt(x); i++)
{
if (x % i == 0)
{
y++;
break;
}
}
if (y == 0)
{
z++;
array5[x - 1] = x;
}
}
array5[0] = 1;
array5[1] = 2;
}

6。本科生毕业版本号:

就是当i是质(素)数的时候,i的全部的倍数必定是合数。

假设i已经被推断不是质数了,那么再找到i后面的质数来把这个质

数的倍数筛掉。

static rt_uint32_t array6[ARRAY_LEN];
void func6(void)
{
for (rt_uint32_t i = 1; i <= ARRAY_LEN; i += 2)
{
array6[i - 1] = i;
} for (rt_uint32_t i = 3; i < sqrt(ARRAY_LEN); i+=2)
{
if (array6[i-1])
{
for(rt_uint32_t j=i<<2;j<=ARRAY_LEN;j+=i)
{
array6[j] = 0;
}
}
}
array6[1] = 2;
}

总结

分析了6个算法在我的嵌入式平台执行结果:
定义ARRAY_LEN = 1000;    
func1 2513922
func2 221563
func3 213926
func4 762945
func5 674993
func6 14663
我们能够看到func4、func5并没有我们想象的那么节省时间,我想问题主要出在sqrt上面;sqrt本身是比較耗时的计算,然后func4与func5调用sqrt的次数又比較多;所以导致结果不太乐观。

当然假设把ARRAY_LEN调大。可能结果又会不一样


至此,也就仅仅是我本科毕业的水准了,后面还有更好的纯C算法可以告诉我。

版权声明:本文博客原创文章。博客,未经同意,不得转载。

C语言求素数的算法的更多相关文章

  1. c语言求素数以及改进算法

    代码需要使用c99编译 #include <stdio.h> #include <stdlib.h> #include <math.h> //是否为素数 //从2到 ...

  2. 蓝桥杯 算法训练 Torry的困惑(基本型)(水题,筛法求素数)

    算法训练 Torry的困惑(基本型) 时间限制:1.0s   内存限制:512.0MB      问题描述 Torry从小喜爱数学.一天,老师告诉他,像2.3.5.7……这样的数叫做质数.Torry突 ...

  3. c语言求回文数的三种算法的描述

    c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...

  4. 常见算法:C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,当中一个最小的公倍数是他们的最小公倍数,相同地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...

  5. C语言求最小公倍数和最大公约数三种算法(经典)

    把以前写的一些经验总结汇个总,方便给未来的学弟学妹们做个参考! --------------------------永远爱你们的:Sakura 最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们 ...

  6. 链表插入和删除,判断链表是否为空,求链表长度算法的,链表排序算法演示——C语言描述

    关于数据结构等的学习,以及学习算法的感想感悟,听了郝斌老师的数据结构课程,其中他也提到了学习数据结构的或者算法的一些个人见解,我觉的很好,对我的帮助也是很大,算法本就是令人头疼的问题,因为自己并没有学 ...

  7. C语言求最小公倍数和最大公约数三种算法

    最小公倍数:数论中的一种概念,两个整数公有的倍数成为他们的公倍数,其中一个最小的公倍数是他们的最小公倍数,同样地,若干个整数公有的倍数中最小的正整数称为它们的最小公倍数,维基百科:定义点击打开链接 求 ...

  8. 转载 筛子算法之golang实现求素数解析

    package main import "fmt" // Send the sequence 2, 3, 4, ... to channel 'ch'. func generate ...

  9. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

随机推荐

  1. Spring Data Redis—Pub/Sub(附Web项目源码) (转)

    一.发布和订阅机制 当一个客户端通过 PUBLISH 命令向订阅者发送信息的时候,我们称这个客户端为发布者(publisher). 而当一个客户端使用 SUBSCRIBE 或者 PSUBSCRIBE ...

  2. 网络安全之IP伪造

    眼下非常多站点的涉及存在一些安全漏洞,黑客easy使用ip伪造.session劫持.xss攻击.session注入等手段危害站点安全.在纪录片<互联网之子>(建议搞IT的都要看下)中.亚伦 ...

  3. a标签的背景图在ie8下不显示的问题

    突然发现临下班时候问题就多, 马上下班了被头头告知线上已经上线很久的活动现在有个兼容性问题, a标签的背景图在ie8下会有不显示的情况. 我自己找了台ie8的机器实验了一下, 发现一切正常, 但是在另 ...

  4. VMware workstation 安装错误提示1021解决方法

    Failed to create the requested registry key Key: Installer Error: 1021 解决方法:删除注册表--HKEY_LOCAL_MACHIN ...

  5. 屏蔽DataGridView控件DataError 事件提示的异常信息

    DataGridView.DataError 事件简单介绍: 出现故障.则外部数据分析或验证操作引发异常,或者.当尝试提交数据写入数据源失败. 具体信息:參见MSDN this.dgvState.Da ...

  6. 改动EditPlus默认模板

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2FvaGFpY2hlbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  7. Java开发环境的基本设置

    作为Java的刚開始学习的人,不知道其它的刚開始学习的人有没有和我一样的感受:用Java开发须要配置这么复杂 的环境.太难了.第一次配置时,一团混乱.Oracle监听服务打不开了,PLSql连接不上O ...

  8. Android-它们的定义Notification

    Android-它们的定义Notification 2014年4月26日  消息栏的消息,想必各位Android发烧友非常清楚知道是什么,比方我们下载了一个应用,它可能会定时推送些消息到我们的手机中. ...

  9. 从零开始学Xamarin.Forms(三) Android 制作启动画面

    原文:从零开始学Xamarin.Forms(三) Android 制作启动画面     Xamarin.Forms 在启动的时候相当慢,必须添加一个启动界面,步骤如下: 1.将启动画面的图片命名为:s ...

  10. javascript - 浏览TOM大叔博客的学习笔记

    part1 ---------------------------------------------------------------------------------------------- ...