Information Entropy


Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge


Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream.
Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when
it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication".
We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2,
..., xn}
 and probability mass functionP(X) as:

H(X)=E(−ln(P(x)))

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

H(X)=−∑i=1nP(xi)log b(P(xi))

Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e,
and dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

0log b(0)=limp→0+plog b(p)

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1P2, .., PNPi means the probability
of the i-th value in percentage and the sum of Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000

    牡丹江赛区的第二道签到题。难度不大,基本A题通过后全部人I题也開始非常快通过,题目看起来非常难理解,可是一旦看懂事实上发现这事实上就是一道英文题。题目就是给一堆序列。然后给n个数a1,a2...an。然后对每一个数字求出(ai/sum)*log(ai/sum)的总和,当bit是,log以2为底,当nat时,log以e为底,当dit时。log以10为底,之后计算证明当ai=0时,对结果无影响,所以能够直接忽略,然后直接带入计算就可以AC此题~~~详细AC代码例如以下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
using namespace std;
int a[105];
int main()
{
// freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
int n;
string s;
scanf("%d",&n);
cin>>s;
int sum=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
double res=0;
if(s=="bit")
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log2(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
else if(s=="nat")
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
else
{
for(int i=0;i<n;i++)
{
if(a[i]==0)
continue;
double p1=-log10(a[i]*1.0/sum)*a[i]/sum;
res+=p1;
}
}
printf("%.12f\n",res);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题的更多相关文章

  1. ZOJ3819 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江司A称号 Average Score 注册标题

    Average Score Time Limit: 2 Seconds      Memory Limit: 131072 KB Bob is a freshman in Marjar Univers ...

  2. 2014年亚洲区域赛北京赛区现场赛A,D,H,I,K题解(hdu5112,5115,5119,5220,5122)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 下午在HDU上打了一下今年北京区域赛的重现,过了5题,看来单挑只能拿拿铜牌,呜呜. ...

  3. [hdu5136]Yue Fei's Battle 2014 亚洲区域赛广州赛区J题(dp)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 现场赛的时候由于有个地方有点小问题,没有成功AC,导致与金牌失之交臂. 由于今天下 ...

  4. 第 45 届国际大学生程序设计竞赛(ICPC)亚洲区域赛(济南)-L Bit Sequence

    题意 给你两个数l,m,大小为m的数组a,求[0,l]之间满足以下条件的数x的个数: 对于任何i输入[0,m-1],f(x+i)%2=a[i]:f(k):代表k在二进制下1的个数 m的范围<=1 ...

  5. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

  6. HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011亚洲北京赛区网络赛)

    HDU 4041 Eliminate Witches! (模拟题 ACM ICPC 2011 亚洲北京赛区网络赛题目) Eliminate Witches! Time Limit: 2000/1000 ...

  7. 2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem

    2019~2020icpc亚洲区域赛徐州站H. Yuuki and a problem 题意: 给定一个长度为\(n\)的序列,有两种操作: 1:单点修改. 2:查询区间\([L,R]\)范围内所有子 ...

  8. ICPC 2018 亚洲横滨赛 C Emergency Evacuation(暴力,贪心)

    ICPC 2018 亚洲横滨赛 C Emergency Evacuation 题目大意 你一个车厢和一些人,这些人都坐在座位上,求这些人全部出去的时间最小值 Solution 题目咋说就咋做 直接模拟 ...

  9. 2014ACM/ICPC亚洲区域赛牡丹江站汇总

    球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...

随机推荐

  1. Matlab图像彩色转灰色

    Matlab图像彩色转灰色 时间:2014年5月7日星期三 网上找的程序.实现图像彩色转灰色: I1=imread('C:\Users\Yano\Desktop\matlab\test1\4.jpg' ...

  2. 基于TFTP协议的远程升级设计

    说明:因为CSDN博客编辑器对word格式近乎不支持.因此对表格使用了图片方式(最后一个表格未使用图片格式.大家能够看看效果),CSDN博客编辑器上传图片十分不人性化(直接复制图片是不显示的),因此本 ...

  3. Nagios的客户端的安装

    一.Linux服务器的nagios客户端的安装 步骤: 1.  创建目录,上传文件到该目录 mkdir /data nagios-plugins-2.1.1.tar.gz nrpe-2.12.tar. ...

  4. Python使用MySQLdb操作MySQL

    import MySQLdb,sys try: conn=MySQLdb.connect(host=,user=',db='db1') except Exception,e: print e sys. ...

  5. Android学习十九:ContentProvider初步

    一.Content Provider基本概念 1.ContentProvider为存储和获取数据提供了统一的接口.ContentProvide对数据进行封装.不用关心数据存储的细节.使用表的形式来组织 ...

  6. prepareCall()运行存储过程

    CallableStatement 对象为全部的 DBMS 提供了一种以标准形式调用已储存过程的方法.已储存过程储存在数据库中.对已储存过程的调用是 CallableStatement对象所含的内容. ...

  7. POJ3050 Hopscotch 【DFS】

    Hopscotch Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2113   Accepted: 1514 Descrip ...

  8. Linux智能小开关rfkill

    Linux智能小开关rfkill Rfkill,当中rf是Radio frequency(射频).主要作用是一个专门管理开关的子系统,举例说明Android手机的通知栏能够方便地开关Airplane/ ...

  9. Qt--将Qt 动态链接生成的exe及依赖dll打包方法

    Qt静态编译链接生成的exe文件,不需依赖dll,可以独立运行,发布很方便. 但绝大多数用的都是Qt开源版本,如果用静态链接,会有些限制. 方法之一,就是用动态编译,然后把exe和需要的dll整合成一 ...

  10. XAML基础(一)

    1.0 XAML是啥? XAML(eXtensible Application Markup Language,可 扩展应用 程序标记语言) 是一种声明性的XML语法 ,像WPF,WF或者Silver ...