AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e
题解:
求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B_i+B_j\choose A_i+A_j}\)
虽然\(n\)很大,但是\(A_i,B_i\le 2000\), 所以我们可以考虑一个权值平方的做法
观察到那个式子就等于从\((-A_j,-B_j)\)走到\((A_i,B_i)\)的NE Lattice Path条数,那么就相当于从\(S\)连边向每个\((-A_i,B_i)\), 从每个\((A_i,B_i)\)连边向\(T\), 然后求\(S\)到\(T\)的路径条数,减去\(i\)和\(j\)相等的情况再除以\(2\)就是答案。
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define llong long long
using namespace std;
const int N = 2e5;
const int C = 2000;
const int P = 1e9+7;
llong a[N+3],b[N+3];
llong fact[N+3],finv[N+3];
llong dp[C+C+7][C+C+7];
int n;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {ret = ret*cur%P; y-=(1ll<<i);}
cur = cur*cur%P;
}
return ret;
}
llong comb(llong x,llong y) {return x<0 || y<0 || x<y ? 0ll : fact[x]*finv[x-y]%P*finv[y]%P;}
int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d",&n);
for(int i=1; i<=n; i++) scanf("%d%d",&a[i],&b[i]);
for(int i=1; i<=n; i++) dp[C-a[i]][C-b[i]] += 1ll;
for(int i=1; i<=C+C; i++) dp[0][i] += dp[0][i-1];
for(int i=1; i<=C+C; i++) dp[i][0] += dp[i-1][0];
for(int i=1; i<=C+C; i++)
{
for(int j=1; j<=C+C; j++)
{
dp[i][j] = dp[i][j]+dp[i-1][j]+dp[i][j-1];
dp[i][j] %= P;
}
}
llong ans = 0ll;
for(int i=1; i<=n; i++) ans = (ans+dp[C+a[i]][C+b[i]])%P;
for(int i=1; i<=n; i++) ans = (ans-comb(a[i]+a[i]+b[i]+b[i],a[i]+a[i])+P)%P;
ans = ans*(P+1)/2%P;
printf("%lld\n",ans);
return 0;
}
AtCoder AGC001E BBQ Hard (DP、组合计数)的更多相关文章
- 3.29省选模拟赛 除法与取模 dp+组合计数
LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采 ...
- ZOJ-3380 Patchouli’s Spell Cards DP, 组合计数
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3380 题意:有m种不同的元素,每种元素都有n种不同的相位,现在假 ...
- BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*
BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...
- bzoj 2425 [HAOI2010]计数 dp+组合计数
[HAOI2010]计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 451 Solved: 289[Submit][Status][Discus ...
- 牛客国庆集训派对Day3 B Tree(树形dp + 组合计数)
传送门:https://www.nowcoder.com/acm/contest/203/B 思路及参考:https://blog.csdn.net/u013534123/article/detail ...
- BZOJ 1801: [Ahoi2009]chess 中国象棋 [DP 组合计数]
http://www.lydsy.com/JudgeOnline/problem.php?id=1801 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放 ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- [CF1060F]Shrinking Tree[树dp+组合计数]
题意 你有一棵 \(n\) 个点的树,每次会随机选择树上的一条边,将两个端点 \(u,v\) 合并,新编号随机为 \(u,v\).问最后保留的编号分别为 \(1\) 到 \(n\) 的概率. \(n\ ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
随机推荐
- S4VM解析
S4VM解析 2018年08月03日 15:20:59 stringlife 阅读数 1233 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. ...
- myEclipse10安装以及破解
这里需要下载一个破解补丁 https://pan.baidu.com/s/1ivE2yauZRDdDq8zBxpK06A 可以去网盘里下载, 下载后解压,会有如下文件 然后运行run.bat,会出现这 ...
- winfrom_动态添加按钮button(设置颜色,大小,按钮字体大小、颜色,位置,事件)
List<string> strColor = new List<string>(); strColor.Add("#e67817"); strColor. ...
- IE各版本处理XML的方式
一.支持DOM2级的方式我们知道,现阶段支持DOM2的主流浏览器有IE9+.Firefox.Opera.Chrome和Safari.1.1.创建XML//实际上,DOM2级在document.impl ...
- 搞懂String、StringBuffer、StringBuilder的区别
String.StringBuffer.StringBuilder有什么区别呢? 1.String: 首先String是不可变的这是家喻户晓的,它的底层是用一个final修饰的char数组来保存数据的 ...
- django form 和modelform样式设置
目录 1.form通过attr设置属性 2.输入框设置表单状态 3.modelform的使用 4.结合modelform 使用for循环生成输入框 5.基于init构造方法设置样式 6.基本增删改 ...
- SpringCloud之Feign声明式调用原理及配置
1 什么是Feign Feign是一种声明式.模板化的HTTP客户端(仅在Application Client中使用).声明式调用是指,就像调用本地方法一样调用远程方法,无需感知操作远程http请求. ...
- 安装CDH5.11.2集群
master 192.168.1.30 saver1 192.168.1.40 saver2 192.168.1.50 首先,时间同步 然后,ssh互通 接下来开始: 1.安装MySQL5.6. ...
- 操作xml文件
http://www.cnblogs.com/ 一.xml文件体系如下: <?xml version="1.0" encoding="utf-8" ?&g ...
- 切记:永远不要在MySQL中使用UTF-8
MySQL使用UTF-8 issue 问题描述:最近我遇到了一个bug,我试着通过Rails在以“utf8”编码的MariaDB中保存一个UTF-8字符串,然后出现了一个离奇的错误: Incorrec ...