【转载】 AutoML相关论文
原文地址:
https://www.cnblogs.com/marsggbo/p/9308518.html
------------------------------------------------------------------------------------------------------------
本文为Awesome-AutoML-Papers的译文。
1、AutoML简介
Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:
- 数据预处理 Preprocess the data
- 选择合适的特征 Select appropriate features
- 选择合适的模型族 Select an appropriate model family
- 优化模型参数 Optimize model hyperparameters
- 模型后处理 Postprocess machine learning models
- 分析结果 Critically analyze the results obtained
随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。
AutoML借鉴了机器学习的很多知识,主要包括:
- 贝叶斯优化 Bayesian optimization
- 结构化数据的大数据的回归模型 Regression models for structured data and big data
- 元学习 Meta learning
- 迁移学习 Transfer learning
- 组合优化 Combinatorial optimization.
2、目录
- Papers
- Tutorials
- Articles
- Slides
- Books
- Projects
- Prominent Researchers
Papers
Automated Feature Engineering
Expand Reduce
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
PDF - 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv |
PDF - 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS |
PDF - 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM |
PDF - 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA |
PDF
- 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM |
Hierarchical Organization of Transformations
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
PDF
- 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW |
Meta Learning
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
PDF
- 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI |
Reinforcement Learning
Evolutionary Algorithms
Local Search
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
PDF
- 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR |
Meta Learning
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
PDF
- 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv |
Reinforcement Learning
Transfer Learning
2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv |
PDFFrameworks
- 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |
PDF - 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE |
PDF 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML |
PDFHyperparameter Optimization
Bayesian Optimization
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
PDF - 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD |
PDF - 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE |
PDF - 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR |
PDF - 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD |
PDF - 2015 | Efficient and Robust Automated Machine Learning |
PDF - 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD |
PDF - 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. |
PDF - 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI |
PDF - 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA |
PDF - 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM |
PDF - 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM |
PDF - 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms |
PDF - 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR |
PDF - 2012 | Practical Bayesian Optimization of Machine Learning Algorithms |
PDF - 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) |
PDF
- 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS |
Evolutionary Algorithms
Lipschitz Functions
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
PDF
- 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv |
Local Search
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
PDF
- 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR |
Meta Learning
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
PDF
- 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection |
Particle Swarm Optimization
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
PDF - 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications |
PDF
- 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO |
Random Search
Transfer Learning
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
PDF - 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD |
PDF - 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA |
PDF 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML |
PDFMiscellaneous
- 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR |
- 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR |
PDF 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM |
PDF
Tutorials
Bayesian Optimization
2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning |
PDFMeta Learning
2008 | Metalearning - A Tutorial |
PDF
Articles
Bayesian Optimization
2016 | Bayesian Optimization for Hyperparameter Tuning |
LinkMeta Learning
- 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? |
Link 2017 | Learning to learn |
Link
Slides
Automated Feature Engineering
Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. |
PDFHyperparameter Optimization
Bayesian Optimization
- Bayesian Optimisation |
PDF A Tutorial on Bayesian Optimization for Machine Learning |
PDF
Books
Meta Learning
- 2009 | Metalearning - Applications to Data Mining | Springer |
PDF
Projects
- Advisor |
Python|Open Source|Code - auto-sklearn |
Python|Open Source|Code - Auto-WEKA |
Java|Open Source|Code - Hyperopt |
Python|Open Source|Code - Hyperopt-sklearn |
Python|Open Source|Code - SigOpt |
Python|Commercial|Link - SMAC3 |
Python|Open Source|Code - RoBO |
Python|Open Source|Code - BayesianOptimization |
Python|Open Source|Code - Scikit-Optimize |
Python|Open Source|Code - HyperBand |
Python|Open Source|Code - BayesOpt |
C++|Open Source|Code - Optunity |
Python|Open Source|Code - TPOT |
Python|Open Source|Code - ATM |
Python|Open Source|Code - Cloud AutoML |
Python|Commercial|Link - H2O |
Python|Commercial|Link - DataRobot |
Python|Commercial|Link - MLJAR |
Python|Commercial|Link - MateLabs |
Python|Commercial|Link
【转载】 AutoML相关论文的更多相关文章
- AutoML相关论文
本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- sketch 相关论文
sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...
- 转载:Nginx 相关介绍
转载自:https://www.cnblogs.com/wcwnina/p/8728391.html Nginx 相关介绍(Nginx是什么?能干嘛?) Nginx的产生 没有听过Nginx?那么 ...
- Neural ODE相关论文摘要翻译
*****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...
- [转载]Android相关开发网站
my: Android 开发官方文档国内镜像-踏得网: http://wear.techbrood.com/index.html 转载自: http://my.oschina.net/luforn/b ...
- ACL2016信息抽取与知识图谱相关论文掠影
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...
- SDN网络虚拟化、资源映射等相关论文粗读
1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...
- 带状态论文粗读(三)[引用openstate的相关论文阅读]
一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...
随机推荐
- 关于Mock的一些网站
https://github.com/google/googletest/tree/master/googlemock https://blog.csdn.net/hhb200766/article/ ...
- Java8新特性之重复注解(repeating annotations)
一.什么是重复注解 允许在同一申明类型(类,属性,或方法)的多次使用同一个注解 二.一个简单的例子java 8之前也有重复使用注解的解决方案,但可读性不是很好,比如下面的代码: 复制代码代码如下: p ...
- SQLSERVER视图错位的解决办法
原始需求如下: 有一个表T1 create table t1 (id int not null primary key ,v1 ) ) ,'aaa'); ,'bbb'); 有一个表TS,用于记录T1中 ...
- Android上执行python脚本-QPython
看书,发现android可以跑python. 尝试了一下. 首先需要在手机上安装python环境,通过安装apk实现,这个apk叫QPython,还有同类的比如SL4A. QPython的官网:htt ...
- 个人项目———Java实现WordCount
2018年系统分析与设计—个人项目作业 题目来自于 :https://edu.cnblogs.com/campus/xnsy/2018Systemanalysisanddesign/homework/ ...
- 优化你的HTTPS(下),你需要这么做
本篇文章是接着上篇文章来说,这篇介绍三种方法分别是多路复用 ,请求优先级,服务器推送. 多路复用 请求优先级 服务器推送 多路复用 在HTTP1.1中,浏览器客户端在同一时间,针对同一域名下的请求有一 ...
- GitHub常用命令及使用
GitHub使用介绍 摘要: 常用命令: git init 新建一个空的仓库git status 查看状态git add . 添加文件git commit -m '注释' 提交添加的文件并备注说明gi ...
- python - django (auth 的使用)
# """ 1. 创建用户: python manage.py createsuperuser 2. from django.contrib import auth au ...
- ADB命令使用详解
ADB是一个 客户端-服务器端 程序, 其中客户端是你用来操作的电脑, 服务器端是android设备. 1.连接android设置 adb connect 设备名 例如: adb connect 12 ...
- TDOA 之 基站逻辑代码实现
在前一篇博文里描述了基站的逻辑部分,这里贴出来具体代码实现.https://www.cnblogs.com/tuzhuke/p/11689881.html 1 Sync 信息部分 case 'S': ...