原文地址:

https://www.cnblogs.com/marsggbo/p/9308518.html

------------------------------------------------------------------------------------------------------------

本文为Awesome-AutoML-Papers的译文。

1、AutoML简介

Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它。然而,这些成果都很大程度上取决于人类机器学习专家来完成如下工作:

  • 数据预处理 Preprocess the data
  • 选择合适的特征 Select appropriate features
  • 选择合适的模型族 Select an appropriate model family
  • 优化模型参数 Optimize model hyperparameters
  • 模型后处理 Postprocess machine learning models
  • 分析结果 Critically analyze the results obtained

随着大多数任务的复杂度都远超非机器学习专家的能力范畴,机器学习应用的不断增长使得人们对现成的机器学习方法有了极大的需求。因为这些现成的机器学习方法使用简单,并且不需要专业知识。我们将由此产生的研究领域称为机器学习的逐步自动化。

AutoML借鉴了机器学习的很多知识,主要包括:

  • 贝叶斯优化 Bayesian optimization
  • 结构化数据的大数据的回归模型 Regression models for structured data and big data
  • 元学习 Meta learning
  • 迁移学习 Transfer learning
  • 组合优化 Combinatorial optimization.

2、目录

Papers

Automated Feature Engineering

  • Expand Reduce

    • 2017 | AutoLearn — Automated Feature Generation and Selection | Ambika Kaul, et al. | ICDM | PDF
    • 2017 | One button machine for automating feature engineering in relational databases | Hoang Thanh Lam, et al. | arXiv | PDF
    • 2016 | Automating Feature Engineering | Udayan Khurana, et al. | NIPS | PDF
    • 2016 | ExploreKit: Automatic Feature Generation and Selection | Gilad Katz, et al. | ICDM | PDF
    • 2015 | Deep Feature Synthesis: Towards Automating Data Science Endeavors | James Max Kanter, Kalyan Veeramachaneni | DSAA | PDF
  • Hierarchical Organization of Transformations

    • 2016 | Cognito: Automated Feature Engineering for Supervised Learning | Udayan Khurana, et al. | ICDMW | PDF
  • Meta Learning

    • 2017 | Learning Feature Engineering for Classification | Fatemeh Nargesian, et al. | IJCAI | PDF
  • Reinforcement Learning

    • 2017 | Feature Engineering for Predictive Modeling using Reinforcement Learning | Udayan Khurana, et al. | arXiv | PDF
    • 2010 | Feature Selection as a One-Player Game | Romaric Gaudel, Michele Sebag | ICML | PDF

      Architecture Search

  • Evolutionary Algorithms

    • 2017 | Large-Scale Evolution of Image Classifiers | Esteban Real, et al. | PMLR | PDF
    • 2002 | Evolving Neural Networks through Augmenting Topologies | Kenneth O.Stanley, Risto Miikkulainen | Evolutionary Computation | PDF
  • Local Search

    • 2017 | Simple and Efficient Architecture Search for Convolutional Neural Networks | Thomoas Elsken, et al. | ICLR | PDF
  • Meta Learning

    • 2016 | Learning to Optimize | Ke Li, Jitendra Malik | arXiv | PDF
  • Reinforcement Learning

    • 2018 | Efficient Neural Architecture Search via Parameter Sharing | Hieu Pham, et al. | arXiv | PDF
    • 2017 | Neural Architecture Search with Reinforcement Learning | Barret Zoph, Quoc V. Le | ICLR | PDF
  • Transfer Learning

    • 2017 | Learning Transferable Architectures for Scalable Image Recognition | Barret Zoph, et al. | arXiv | PDF

      Frameworks

  • 2017 | Google Vizier: A Service for Black-Box Optimization | Daniel Golovin, et al. | KDD |PDF
  • 2017 | ATM: A Distributed, Collaborative, Scalable System for Automated Machine Learning | T. Swearingen, et al. | IEEE | PDF
  • 2015 | AutoCompete: A Framework for Machine Learning Competitions | Abhishek Thakur, et al. | ICML | PDF

    Hyperparameter Optimization

  • Bayesian Optimization

    • 2016 | Bayesian Optimization with Robust Bayesian Neural Networks | Jost Tobias Springenberg, et al. | NIPS | PDF
    • 2016 | Scalable Hyperparameter Optimization with Products of Gaussian Process Experts | Nicolas Schilling, et al. | PKDD | PDF
    • 2016 | Taking the Human Out of the Loop: A Review of Bayesian Optimization | Bobak Shahriari, et al. | IEEE | PDF
    • 2016 | Towards Automatically-Tuned Neural Networks | Hector Mendoza, et al. | JMLR | PDF
    • 2016 | Two-Stage Transfer Surrogate Model for Automatic Hyperparameter Optimization | Martin Wistuba, et al. | PKDD | PDF
    • 2015 | Efficient and Robust Automated Machine Learning | PDF
    • 2015 | Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | PKDD | PDF
    • 2015 | Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization | Martin Wistua, et al. | PDF
    • 2015 | Joint Model Choice and Hyperparameter Optimization with Factorized Multilayer Perceptrons | Nicolas Schilling, et al. | ICTAI | PDF
    • 2015 | Learning Hyperparameter Optimization Initializations | Martin Wistuba, et al. | DSAA | PDF
    • 2015 | Scalable Bayesian optimization using deep neural networks | Jasper Snoek, et al. | ACM | PDF
    • 2015 | Sequential Model-free Hyperparameter Tuning | Martin Wistuba, et al. | ICDM | PDF
    • 2013 | Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms | PDF
    • 2013 | Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures | J. Bergstra | JMLR | PDF
    • 2012 | Practical Bayesian Optimization of Machine Learning Algorithms | PDF
    • 2011 | Sequential Model-Based Optimization for General Algorithm Configuration(extended version) | PDF
  • Evolutionary Algorithms

    • 2018 | Autostacker: A Compositional Evolutionary Learning System | Boyuan Chen, et al. | arXiv | PDF
    • 2017 | Large-Scale Evolution of Image Classifiers | Esteban Real, et al. | PMLR | PDF
  • Lipschitz Functions

    • 2017 | Global Optimization of Lipschitz functions | C´edric Malherbe, Nicolas Vayatis | arXiv | PDF
  • Local Search

    • 2009 | ParamILS: An Automatic Algorithm Configuration Framework | Frank Hutter, et al. | JAIR | PDF
  • Meta Learning

    • 2008 | Cross-Disciplinary Perspectives on Meta-Learning for Algorithm Selection | PDF
  • Particle Swarm Optimization

    • 2017 | Particle Swarm Optimization for Hyper-parameter Selection in Deep Neural Networks | Pablo Ribalta Lorenzo, et al. | GECCO | PDF
    • 2008 | Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines | Shih-Wei Lin, et al. | Expert Systems with Applications | PDF
  • Random Search

    • 2016 | Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization | Lisha Li, et al. | arXiv | PDF
    • 2012 | Random Search for Hyper-Parameter Optimization | James Bergstra, Yoshua Bengio | JMLR | PDF
    • 2011 | Algorithms for Hyper-parameter Optimization | James Bergstra, et al. | NIPS | PDF
  • Transfer Learning

    • 2016 | Efficient Transfer Learning Method for Automatic Hyperparameter Tuning | Dani Yogatama, Gideon Mann | JMLR | PDF
    • 2016 | Flexible Transfer Learning Framework for Bayesian Optimisation | Tinu Theckel Joy, et al. | PAKDD | PDF
    • 2016 | Hyperparameter Optimization Machines | Martin Wistuba, et al. | DSAA | PDF
    • 2013 | Collaborative Hyperparameter Tuning | R´emi Bardenet, et al. | ICML | PDF

      Miscellaneous

  • 2018 | Accelerating Neural Architecture Search using Performance Prediction | Bowen Baker, et al. | ICLR | PDF
  • 2017 | Automatic Frankensteining: Creating Complex Ensembles Autonomously | Martin Wistuba, et al. | SIAM | PDF

Tutorials

Bayesian Optimization

  • 2010 | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning | PDF

    Meta Learning

  • 2008 | Metalearning - A Tutorial | PDF

Articles

Bayesian Optimization

  • 2016 | Bayesian Optimization for Hyperparameter Tuning | Link

    Meta Learning

  • 2017 | Why Meta-learning is Crucial for Further Advances of Artificial Intelligence? | Link
  • 2017 | Learning to learn | Link

Slides

Automated Feature Engineering

  • Automated Feature Engineering for Predictive Modeling | Udyan Khurana, etc al. | PDF

    Hyperparameter Optimization

    Bayesian Optimization

  • Bayesian Optimisation | PDF
  • A Tutorial on Bayesian Optimization for Machine Learning | PDF

Books

Meta Learning

  • 2009 | Metalearning - Applications to Data Mining | Springer | PDF

Projects

  • Advisor | Python | Open Source | Code
  • auto-sklearn | Python | Open Source | Code
  • Auto-WEKA | Java | Open Source | Code
  • Hyperopt | Python | Open Source | Code
  • Hyperopt-sklearn | Python | Open Source | Code
  • SigOpt | Python | Commercial | Link
  • SMAC3 | Python | Open Source | Code
  • RoBO | Python | Open Source | Code
  • BayesianOptimization | Python | Open Source | Code
  • Scikit-Optimize | Python | Open Source | Code
  • HyperBand | Python | Open Source | Code
  • BayesOpt | C++ | Open Source | Code
  • Optunity | Python | Open Source | Code
  • TPOT | Python | Open Source | Code
  • ATM | Python | Open Source | Code
  • Cloud AutoML | Python | CommercialLink
  • H2O | Python | Commercial | Link
  • DataRobot | Python | Commercial | Link
  • MLJAR | Python | Commercial | Link
  • MateLabs | Python | Commercial | Link

【转载】 AutoML相关论文的更多相关文章

  1. AutoML相关论文

    本文为Awesome-AutoML-Papers的译文. 1.AutoML简介 Machine Learning几年来取得的不少可观的成绩,越来越多的学科都依赖于它.然而,这些成果都很大程度上取决于人 ...

  2. Kintinuous 相关论文 Volume Fusion 详解

    近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...

  3. sketch 相关论文

    sketch 相关论文 Sketch Simplification We present a novel technique to simplify sketch drawings based on ...

  4. 转载:Nginx 相关介绍

    转载自:https://www.cnblogs.com/wcwnina/p/8728391.html Nginx 相关介绍(Nginx是什么?能干嘛?)   Nginx的产生 没有听过Nginx?那么 ...

  5. Neural ODE相关论文摘要翻译

    *****仅供个人学习记录***** Neural Ordinary Differential Equations[2019] 论文地址:[1806.07366] Neural Ordinary Di ...

  6. [转载]Android相关开发网站

    my: Android 开发官方文档国内镜像-踏得网: http://wear.techbrood.com/index.html 转载自: http://my.oschina.net/luforn/b ...

  7. ACL2016信息抽取与知识图谱相关论文掠影

    实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer ...

  8. SDN网络虚拟化、资源映射等相关论文粗读

    1. Control Plane Latency with SDN Network Hypervisors: The Cost of Virtualization 年份:2016 来源:IEEE NE ...

  9. 带状态论文粗读(三)[引用openstate的相关论文阅读]

    一 文章名称:FLOWGUARD: Building Robust Firewalls for Software-Defined Networks 发表时间:2014 期刊来源:--- 解决问题: 一 ...

随机推荐

  1. Linux命令——column

    参考:Viewing Linux output in columns 功能 column命令把他的输入格式化多列显示.输入可以是文件,也可以是标准输入. 列优先,从左到右 显示的时候首先填满最左列,然 ...

  2. 个性化召回算法实践(一)——CF算法

    协同过滤推荐(Collaborative Filtering Recommendation)主要包括基于用户的协同过滤算法与基于物品的协同过滤算法. 下面,以movielens数据集为例,分别实践这两 ...

  3. 锁、threading.local、线程池

    一.锁 Lock(1次放1个) 什么时候用到锁: 线程安全,多线程操作时,内部会让所有线程排队处理.如:list.dict.queue 线程不安全, import threading import t ...

  4. Three.js入门详解

    什么是WebGL   WebGL(Web 图形库)是一种 JavaScript API,用于在任何兼容的 Web 浏览器中呈现交互式 3D 和 2D 图形,而无需使用插件.WebGL 通过引入一个与 ...

  5. 大数据之路week06--day07(Linux中的mysql的离线安装)

    这里我提供 服务端和客户端的两个jar包的百度云,也是我使用的 链接:https://pan.baidu.com/s/11a3LT-ENZ8n9IF19-VjmWA 提取码:bdls 离线安装Mysq ...

  6. 搭建jenkins+python+selenium+robot framework环境

    1.安装jenkins 具体参考:https://www.cnblogs.com/dydxw/p/10538103.html 2.下载插件 我是为了方便,把有关python.selenium.robo ...

  7. python_面向对象——反射

    1.反射 四个方法:getattr() 获取 class Person(): def __init__(self,name,age): self.name = name self.age = age ...

  8. 前端项目中的必要文件-【robots.txt】

    放在src文件下::   robots.txt     告诉搜索引擎,该网站的被允许扒取得网页和静止扒取得     facicon.ico      网站地址栏的显示图   humans.txt   ...

  9. springboot启动时执行任务CommandLineRunner

    # SpringBoot中CommandLineRunner的作用> 平常开发中有可能需要实现在项目启动后执行的功能,SpringBoot提供的一种简单的实现方案就是添加一个model并实现Co ...

  10. Jenkins automate workflow

    Now we will build an automate flow from code compiling to product delivery.The essential tools using ...