P3986 斐波那契数列——数学(EXGCD)
https://www.luogu.org/problem/P3986
很久很久以前,我好像写过exgcd,但是我已经忘了;
洛谷上搜EXGCD搜不到,要搜(扩展欧几里得)
这道题就是ax+by=k,其中ab为斐波那契数列里面相邻的两项;
a+b=k ;a+2b=k;2a+3b=k,3a+5b=k;
我们求解ax+by=k;
当x最小时,y最大,答案就是y/a向上取整;
因为y=(k-ax)/b;
{设此时的x为x0,则满足x=x0+tb,同理满足y=y0+ta,显然t+1就是此时的答案贡献,
那么用最大的y除以a向上取整即可(注意之所以要向上取整而不是t+1,
是因为避免y=0的情况,还有注意特判x0=0的情况)}(https://www.luogu.org/space/show?uid=24553)
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mo=1e9+;
ll f[],k;
ll x,y;
int cnt; void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return ;
}
exgcd(b,a%b,y,x);
y-=(a/b)*x;
} ll ans;
int main()
{
scanf("%lld",&k);
f[]=;f[]=;cnt=;
for(int i=;i<=;i++)
{
f[i]=f[i-]+f[i-];
if(f[i]>k) break;
++cnt;
}
for(int i=;i<=cnt;i++)
{
ll a=f[i-],b=f[i];
exgcd(a,b,x,y);
x*=k;//y*=k;
x=(x%b+b)%b;
if(x==) x=b;
y=(k-a*x)/b;
if(y<) continue;
ans=(ans+(y-)/a+)%mo;
}
printf("%lld",ans); return ;
}
P3986 斐波那契数列——数学(EXGCD)的更多相关文章
- [Luogu P3986] 斐波那契数列 (逆元)
题面 传送门:https://www.luogu.org/problemnew/show/P3986 Solution 这是一道很有意思的数论题. 首先,我们可以发现直接枚举a和b会T的起飞. 接下来 ...
- P3986 斐波那契数列
题目描述 定义一个数列: f(0)=a,f(1)=b,f(n)=f(n−1)+f(n−2) 其中 a,b均为正整数,n≥2 . 问有多少种 (a,b),使得 k 出现在这个数列里,且不是前两项. 由于 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 《BI那点儿事》Microsoft 时序算法——验证神奇的斐波那契数列
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- ACM2 斐波那契数列
描述 在数学上,斐波那契数列(Fibonacci Sequence),是以递归的方法来定义: F0 = 0 F1 = 1 Fn = Fn - 1 + Fn - 2 用文字来说,就是斐波那契数列由0和1 ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- 【每天一题ACM】 斐波那契数列(Fibonacci sequence)的实现
最近因为一些原因需要接触一些ACM的东西,想想写个blog当作笔记吧!同时也给有需要的人一些参考 话不多说,关于斐波那契数列(Fibonacci sequence)不了解的同学可以看看百度百科之类的, ...
- php实现斐波那契数列以及由此引起的联想
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一 ...
- 九度OJ题目1387斐波那契数列
/*斐波那契数列,又称黄金分割数列,指的是这样一个数列: 0.1.1.2.3.5.8.13.21.…… 在数学上,斐波纳契数列被定义如下: F0=0,F1=1, Fn=F(n-1)+F(n-2)(n& ...
随机推荐
- 将double转化成string,并保持N位小数
double dumpSize = (1024000000.1415926535897932384 * 1.0) / 1024 / 1024; string tempStr = to_string(d ...
- Thread.interrupt()源码跟踪
1 JDK源码跟踪 // java.lang.Thread public void interrupt() { if (this != Thread.currentThread()) checkAcc ...
- c#基础知识梳理(一)
一.C#简介 C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言.C#看起来与Java有着惊人的相似:它包括了诸如单一继承.接口.与Java几乎同样的语法和编 ...
- 使用Feign通过服务名调用服务,找不到服务
fegineureka 报错环境: eureka注册中心在远程服务器上 本地服务注册到远程的eureka注册中心 本地服务通过Fegin组件+服务名调用服务 报错时,注册中心的情况: Applicat ...
- Django中生成随机验证码(pillow模块的使用)
Django中生成随机验证码 1.html中a标签的设置 <img src="/get_validcode_img/" alt=""> 2.view ...
- 【转】equals和==的区别
==: == 用于比较两个对象的内存地址值(引用值)是否相等,也就是比较的是变量(栈)内存中存放的对象的(堆)内存地址,用来判断两个对象的地址是否相同,即是否是指相同一个对象.比较的是真正意义上的指针 ...
- 搭建一个简单的React项目
我是使用了create-react-app来搭建的基本框架,其中的原理和vue-cli差不多的脚手架.(当然也可以自己配置项目目录,这里我偷了一下懒) npm install -g create-re ...
- GitHub开源的10个超棒后台管理面板
目录1.AdminLTE 2.vue-Element-Admin 3.tabler 4.Gentelella 5.ng2-admin 6.ant-design-pro 7.blur-admin 8.i ...
- Android笔记(十二)AndroidManiFest.xml
AndroidManiFest.xml清单文件是每个Android项目所必须的,它是整个Android应用的全局描述文件.AndroidManiFest.xml清单文件说明了该应用的名称.所使用的图标 ...
- zabbix server for Centos 6.3
1.安装LNMP 参照http://lnmp.org/install.html 2.安装zabbix service 2.1下载zabbix,并解压 wget http://nchc.dl.sourc ...