title: 【概率论】5-5:负二项分布(The Negative Binomial Distribution)

categories:

- Mathematic

- Probability

keywords:

- The Negative Binomial Distribution

- The Geometric Distribution

toc: true

date: 2018-03-29 08:57:12



Abstract: 本文介绍负二项分布,几何分布的基础知识

Keywords: The Negative Binomial Distribution,The Geometric Distribution

开篇废话

到目前为止,所有的分部都是从Bernoulli 分布衍生出来的:

  1. 二项分布,nnn 次Bernoulli试验的结果中,每次试验的分布不变,结果为1的次数 XXX 的分布
  2. 超几何分布,nnn 次Bernoulli试验,每次试验分布发生改变,结果为1的次数 XXX 的分布,当试验分布变化不大的时候和二项分布结果相同
  3. 泊松分布,用来在某种特殊情况下(nnn 比较大, ppp 比较小,而 npnpnp 又不是很大的情况下)近似二项分布,当n趋近于无穷的时候等同于二项分布。

今天我们还是从二项分布出发,研究这样一个事实,对于Bernoulli过程,我们设定,当某个结果出现固定次数的时候,整个过程的数量,比如我们生产某个零件,假设每个零件的合格与否都是相互独立的,且分布相同,那么当我们生产出了五个不合格零件时,一共生产了多少合格的零件,这个数量就是一个负二项分布。

为什么叫负二项分布而不是正二项分布?

有两种说法,第一我们上面说到的例子,多半是失败到了固定次数时 XXX 的分布,另一种是站在分布的系数上来观察的,在下面我们可以看得到。

Definition and Interpretation

废话中给出的生产零件的例子就是引出定义的关键。我们来先看一个定理,描述上面过程的定理:

Theorem Sampling until a Fixed Number of Success.Suppose that an infinite sequence of Bernoulli trails with probability of success ppp are available.The number XXX of failures that occur before the rrrth success has the following p.d.f.

f(x∣r,p)={(r+x−1x)pr(1−p)xfor x=0,1,2,…0otherwise
f(x|r,p)=
\begin{cases}
\begin{pmatrix}
r+x-1\\
x
\end{pmatrix}p^r(1-p)^x&\text{for }x=0,1,2,\dots\\
0&\text{otherwise}
\end{cases}
f(x∣r,p)=⎩⎨⎧​(r+x−1x​)pr(1−p)x0​for x=0,1,2,…otherwise​

证明如下

首先我们必须分析一下这个过程,当成功的次数达到目标后停止试验,也就是说最后一次必然是成功的,不然试验不会结束,所以我们需要的是在已经进行了的 x+r−1x+r-1x+r−1 次实验中完成 r−1r-1r−1 次成功,xxx 次失败,那么从计数原理角度,概率为:

Pr(An)=(n−1r−1)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1)pr(1−p)(n−r)p
\begin{aligned}
Pr(A_n)&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r-1}(1-p)^{(n-1)-(r-1)}p\\
&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r}(1-p)^{(n-r)}p
\end{aligned}
Pr(An​)​=(n−1r−1​)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1​)pr(1−p)(n−r)p​

本文节选自地址:https://www.face2ai.com/Math-Probability-5-5-The-Negative-Binomial-Distribution转载请标明出处

【概率论】5-5:负二项分布(The Negative Binomial Distribution)的更多相关文章

  1. The zero inflated negative binomial distribution

    The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...

  2. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  3. negative binomial(Pascal) distribution —— 负二项式分布(帕斯卡分布)

    1. 定义 假设一串独立的伯努利实验(0-1,成功失败,伯努利实验),每次实验(trial)成功和失败的概率分别是 p 和 1−p.实验将会一直重复下去,直到实验失败了 r 次.定义全部实验中成功的次 ...

  4. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

  5. Distribution

    Random Variable \(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\) \(\underli ...

  6. NLP&数据挖掘基础知识

    Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...

  7. R代码展示各种统计学分布 | 生物信息学举例

    二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...

  8. 常见的机器学习&数据挖掘知识点

    原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255 常见的机器学习&数据挖掘知识点 转载请说明出处 Basis(基础) ...

  9. R语言函数总结(转)

    R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...

随机推荐

  1. Hibernate定义

    Hibernate:(Object Relational Mapping)对象关系映射   对象关系映射就是在操作数据库之前,先将数据库的表和实体类关联起来,通过实体类的对象,就可以操作数据库,开发人 ...

  2. 论坛中的问题:47(等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态)

    原文:论坛中的问题:47(等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态) 求助:等待类型为MSSEARCH的进程被KILL之后,一直处于回滚状态 http://bbs.csdn.n ...

  3. 关于 false sharing

    问题来源 在多线程操作中,每个线程对操作对象都会有单独的缓存,最后将缓存同步到内存上,不加锁的话会导致数据缺乏同步出现错误,如果只是简单地加锁,性能就会飞速下降 解法 spacing &&am ...

  4. 在我的电脑中删除wps云文档图标

    在我的电脑中删除wps云文档图标 右键点击win10左下角选择运行,输入regedit打开注册表后,找到以下注册表路径: HKEY_CURRENT_USER\Software\Microsoft\Wi ...

  5. MySql数据库操作之数据约束

    首先数据库的外键是数据库提供的一种完整性约束.在许多数据库的书上也会介绍到,然而对于外键这个完整性性约束究竟应该在数据库端实现,还是在项目业务端实现很多人有着不同的意见. 个人开发(小型应用).数据库 ...

  6. python3 super().__init__()

    父类不会自动调用__init__方法 class A: def __init__(self): A = 'A' self.a = 'a' print('init A') class B(A): def ...

  7. iOS Touch Id 开发

    Touch Id Touch Id是iPhone5S后加入的一项新的功能,也就是大家熟知的指纹识别技术.大家用得最多的可能是手机的解屏操作,不用在和以前一样输入手机的四位数密码进行验证.一方面不用担心 ...

  8. node.js 调用mysql 数据库

    1.在package.json中添加mysql依赖 命令:npm install mysql --save 2.项目中添加mysql文件夹 > 文件夹下创建config文件夹,并在config下 ...

  9. 国内首本免费深度学习书籍!还有人没Get么?

    这本书的作者很有趣鸭. 一开篇别的不说,先跟大家讲哲学,讨论人工智能实现的可能性.摘录一些他的结论: 人工智能可以实现 自由意志并不存在 量子力学并不能证明自由意志的存在 幸福感和物质水平提高并没有绝 ...

  10. NTFS文件系统概述

    NTFS简介 NTFS是Windows NT家族1的限制级专用的文件系统2.Win95.Win98识别不了NTFS,只有支持NT内核的OS才能识别NTFS文件系统.当前,NTFS取代了老式的FAT文件 ...