【概率论】5-5:负二项分布(The Negative Binomial Distribution)
title: 【概率论】5-5:负二项分布(The Negative Binomial Distribution)
categories:
- Mathematic
- Probability
keywords:
- The Negative Binomial Distribution
- The Geometric Distribution
toc: true
date: 2018-03-29 08:57:12
Abstract: 本文介绍负二项分布,几何分布的基础知识
Keywords: The Negative Binomial Distribution,The Geometric Distribution
开篇废话
到目前为止,所有的分部都是从Bernoulli 分布衍生出来的:
- 二项分布,nnn 次Bernoulli试验的结果中,每次试验的分布不变,结果为1的次数 XXX 的分布
- 超几何分布,nnn 次Bernoulli试验,每次试验分布发生改变,结果为1的次数 XXX 的分布,当试验分布变化不大的时候和二项分布结果相同
- 泊松分布,用来在某种特殊情况下(nnn 比较大, ppp 比较小,而 npnpnp 又不是很大的情况下)近似二项分布,当n趋近于无穷的时候等同于二项分布。
今天我们还是从二项分布出发,研究这样一个事实,对于Bernoulli过程,我们设定,当某个结果出现固定次数的时候,整个过程的数量,比如我们生产某个零件,假设每个零件的合格与否都是相互独立的,且分布相同,那么当我们生产出了五个不合格零件时,一共生产了多少合格的零件,这个数量就是一个负二项分布。
为什么叫负二项分布而不是正二项分布?
有两种说法,第一我们上面说到的例子,多半是失败到了固定次数时 XXX 的分布,另一种是站在分布的系数上来观察的,在下面我们可以看得到。
Definition and Interpretation
废话中给出的生产零件的例子就是引出定义的关键。我们来先看一个定理,描述上面过程的定理:
Theorem Sampling until a Fixed Number of Success.Suppose that an infinite sequence of Bernoulli trails with probability of success ppp are available.The number XXX of failures that occur before the rrrth success has the following p.d.f.
f(x∣r,p)={(r+x−1x)pr(1−p)xfor x=0,1,2,…0otherwise
f(x|r,p)=
\begin{cases}
\begin{pmatrix}
r+x-1\\
x
\end{pmatrix}p^r(1-p)^x&\text{for }x=0,1,2,\dots\\
0&\text{otherwise}
\end{cases}
f(x∣r,p)=⎩⎨⎧(r+x−1x)pr(1−p)x0for x=0,1,2,…otherwise
证明如下
首先我们必须分析一下这个过程,当成功的次数达到目标后停止试验,也就是说最后一次必然是成功的,不然试验不会结束,所以我们需要的是在已经进行了的 x+r−1x+r-1x+r−1 次实验中完成 r−1r-1r−1 次成功,xxx 次失败,那么从计数原理角度,概率为:
Pr(An)=(n−1r−1)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1)pr(1−p)(n−r)p
\begin{aligned}
Pr(A_n)&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r-1}(1-p)^{(n-1)-(r-1)}p\\
&=\begin{pmatrix}n-1\\r-1\end{pmatrix}p^{r}(1-p)^{(n-r)}p
\end{aligned}
Pr(An)=(n−1r−1)pr−1(1−p)(n−1)−(r−1)p=(n−1r−1)pr(1−p)(n−r)p
本文节选自地址:https://www.face2ai.com/Math-Probability-5-5-The-Negative-Binomial-Distribution转载请标明出处
【概率论】5-5:负二项分布(The Negative Binomial Distribution)的更多相关文章
- The zero inflated negative binomial distribution
The zero-inflated negative binomial – Crack distribution: some properties and parameter estimation Z ...
- 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution
PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...
- negative binomial(Pascal) distribution —— 负二项式分布(帕斯卡分布)
1. 定义 假设一串独立的伯努利实验(0-1,成功失败,伯努利实验),每次实验(trial)成功和失败的概率分别是 p 和 1−p.实验将会一直重复下去,直到实验失败了 r 次.定义全部实验中成功的次 ...
- 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution
PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...
- Distribution
Random Variable \(\underline{cdf:}\)cumulative distribution function \(F(x)=P(X \leq x)\) \(\underli ...
- NLP&数据挖掘基础知识
Basis(基础): SSE(Sum of Squared Error, 平方误差和) SAE(Sum of Absolute Error, 绝对误差和) SRE(Sum of Relative Er ...
- R代码展示各种统计学分布 | 生物信息学举例
二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distr ...
- 常见的机器学习&数据挖掘知识点
原文:http://blog.csdn.net/heyongluoyao8/article/details/47840255 常见的机器学习&数据挖掘知识点 转载请说明出处 Basis(基础) ...
- R语言函数总结(转)
R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还包括重音字母).不过,一个命名必须以 . 或者字母开头,并且如果以 . 开头,第二个字符不允许是数字. 基本命令要么是表达 ...
随机推荐
- python3 内置方法 字符串转换为字典
内置方法:eval()将字符串转换为字典代码: str = '''{'backend':'www.oldboy.org', 'record':{ 'server':'122.111.2.23', 'w ...
- C#方法(用法,参数)
方法:是一种用于实现可以由对象或类执行的计算或操作的成员,是一个已命名的语句集.方法就是把一些相关的语句组织到一起,用来执行一个任务的语句块.比如每个C#程序至少带一个main函数 1.格式:修饰符 ...
- SQL Server2008本地数据库调用SP发送邮件
一.首先要对本地数据库做配置 1.通过使用数据库邮件配置向导和sp_configure存储过程配置启用数据库邮件: 注:服务器名称填写发送服务器的路径或者IP,电子邮件地址为寄件者地址 配置好数据库邮 ...
- Hadoop Local(本地)模式搭建
1. 下载压缩包 2. 配置环境变量 3. 配置Hadoop的JAVA_HOME路径 4. WordCount 1. 下载压缩包 下载Hadoop binary二进制压缩包 https://hadoo ...
- 写在NOIP2018后
退役学了一周文化课,感觉还行吧 在周四就有学弟跟我说用我的源代码测329,当时还是出乎意料的. 本来期望是100+50+55+100+50+44=399,结果测得是100+55+50+100+20+4 ...
- werkzeug/routing.py-Map()源码解析
Map类主要用来存储所有的url规则和一些配置参数的.其中有一些配置的值只存储在Map实例里,因为这些值影响着所有的规则,还有一些其他的默认规则可以被重写. 通过之前分析的add_url_rule源码 ...
- FreeRTOS config开始的宏
FreeRTOSConfig.h系统配置文件中可以自定义,FreeRTOS.h中定义默认值 configAPPLICATION_ALLOCATED_HEAP 默认情况下FreeRTOS的堆内存是由编译 ...
- 在pivotal cloud foundry上申请账号和部署应用
Created by Wang, Jerry, last modified on Jul 04, 2016 URL: http://run.pivotal.io/ maintain your mobi ...
- MacOS中创建Sublime Text3快捷方式返回Operation not permitted的原因及解决
在类Unix系统中我们可以很随心的添加一些程序在终端里快捷方法,比如将一些常用的工具放在/usr/bin下面 Sublime Text3是一个小巧精致而又功能强大的程序,而且本猫也安装了Swift语言 ...
- SQLSEVER 同台服务器下不同表 触发器实现数据实时同步
触发器的使用: 1.首先建立两个相同结构的表,两个表明的列的名称不同. student_01 字段 name ; 字段 age ; 字段 class ; student_02 字段 ...