国庆集训 Day1 T2 生成图

现在要生成一张\(n\)个点的有向图。要求满足:

1.若有 a->b的边,则有 b->a 的边

2.若有 a->b 的边和 b->c 的边,则有 a->c 的边

3.至少有一个点没有自环。

求方案数模上\(m\)

\(n≤2000,2≤m≤1,000,000,007\)

样例:

input

2 5

output

3

有点难度的DP,首先需要明确的是在一个连通图中每一个点都有自环(样例可体现),所以有点没有自环当且仅当这一个点独立为一个联通块

设\(g[i]\)表示\(i\)个点自由组合,且每个点都存在自环的方案数,\(f[i]\)表示\(i\)个点自由组合,且至少有1个点没有自环的方案数(\(f[n]\)即答案)

考虑\(f[i]\)转移有以下情况:

  • 第\(i\)个点孤立且没有自环,即\(f[i]+=f[i-1]+g[i-1]\)
  • 第\(i\)个点孤立且自环,即\(f[i]+=f[i-1]\)
  • 第\(i\)个点与前\(i-1\)个点中的\(j-1\)个点构成一个大小为\(j\)的联通块,即\(f[i]+=\sum_{j=2}^{i-1}f[i-j]\times C_{i-1}^{j-1}\)

考虑\(g[i]\)转移有以下情况:

  • 第\(i\)个点孤立且自环,即\(g[i]+=g[i-1]\)
  • 类似的,第\(i\)个点与前\(i-1\)个点中的\(j-1\)个点构成一个大小为\(j\)的联通块,即\(g[i]+=\sum_{j=2}^{i-1}g[i-j]\times C_{i-1}^{j-1}\)

为求\(C_n^m\),我们可以利用杨辉三角,第\(i\)行第\(j\)列(\(i\)从0开始)即为\(C_i^j\)

#include <cstdio>
#define MAXN 2002
#define ll long long
using namespace std;
ll C[MAXN][MAXN]; //C[n][m]
ll f[MAXN],g[MAXN];
int n,MOD;
int main(){
scanf("%d %d", &n, &MOD);
for(int i=0;i<=n;++i){
C[i][0]=1;
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
f[1]=1;
g[1]=1;
for(int i=2;i<=n;++i){
g[i]=g[i-1]%MOD;
for(int j=2;j<=i-1;++j)
g[i]=(g[i]+g[i-j]*C[i-1][j-1]%MOD)%MOD;
g[i]=(g[i]+1)%MOD;
f[i]=(f[i-1]+f[i-1]+g[i-1])%MOD;
for(int j=2;j<=i-1;++j)
f[i]=(f[i]+f[i-j]*C[i-1][j-1]%MOD)%MOD;
}
printf("%lld", f[n]);
return 0;
}

一开始题读错了导致后面DP推错了,以后注意要仔细揣摩样例与题意

国庆集训 Day1 T2 生成图 DP的更多相关文章

  1. 牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并)

    牛客2018国庆集训 DAY1 D Love Live!(01字典树+启发式合并) 题意:给你一颗树,要求找出简单路径上最大权值为1~n每个边权对应的最大异或和 题解: 根据异或的性质我们可以得到 \ ...

  2. 国庆集训Day1

    T1 divide 题意: 有\(n\)个数 \(a_1, a_2,..., a_n\) 有m个数\(b_1, b_2,..., b_n\) 令\(a = a_1\times a_2\,\times ...

  3. 长乐国庆集训Day1

    T1 统计数字 题目 [题目描述] 设 S(N ) 表示 N 的各位数字之和,如 S(484) = 4+8+4 = 16, S(22) = 2+2 = 4. 如果一个正整数满足 S(x*x) = S( ...

  4. 雅礼集训 Day1 T2 折射

    折射 题目描述 小\(\mathrm{Y}\)十分喜爱光学相关的问题,一天他正在研究折射. 他在平面上放置了\(n\)个折射装置,希望利用这些装置画出美丽的折线. 折线将从某个装置出发,并且在经过一处 ...

  5. 暑假提高组集训Day1 T2

    那么这一道题我在考试的时候写挂了(0分 呜呜~) 我原来的思路是广搜来骗取部分分(哈哈~) 但是我忘记了一个非常重要的问题 我广搜开的数组没有考虑负的下标 下一次考试如果再写暴力 就可以把坐标都加上一 ...

  6. 2019 牛客国庆集训day1 2019 点分治

    题目链接:https://ac.nowcoder.com/acm/contest/1099/I 点分治,计算路径数的时候,先将每个点到根的距离模2019,计算的时候就可以O(n)求出数目,对于模201 ...

  7. 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1

    目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...

  8. 2019暑期金华集训 Day1 组合计数

    自闭集训 Day1 组合计数 T1 \(n\le 10\):直接暴力枚举. \(n\le 32\):meet in the middle,如果左边选了\(x\),右边选了\(y\)(且\(x+y\le ...

  9. codevs 4511 信息传递(NOIP2015 day1 T2)

    4511 信息传递 NOIP2015 day1 T2 时间限制: 1 s 空间限制: 128000 KB 传送门 题目描述 Description 有个同学(编号为 1 到)正在玩一个信息传递的游戏. ...

随机推荐

  1. Fiddler讲解2

    想要 浏览更多Fiddler内容:请点击进入Fiddler官方文档 阅读目录: 一.查看网络流量: 二.检查网络流量: 三.查看Web会话摘要: 四.查看Web会话统计信息: 五.查看Web会话内容: ...

  2. xml文件中引用网址报红色如何解决

    用了ideal的宝宝们一定遇到过配置文件网址报红的错误吧 其实解决很简单,就是网不好导致它没法补全,我们手动给他补全就好啦 复制报红的网址 点击File==>settings==>lang ...

  3. [Done] Codeforces Round #562 (Div. 2) 题解

    A - Circle Metro 模拟几百步就可以了. B - Pairs 爆搜一下,时间复杂度大概是 $O(4 * n)$ Code: 56306723 C - Increasing by Modu ...

  4. luogu P4887 莫队二次离线

    珂朵莉给了你一个序列$a$,每次查询给一个区间$[l,r]$ 查询$l≤i<j≤r$,且$ai⊕aj$的二进制表示下有$k$个$1$的二元组$(i,j)$的个数.$⊕$是指按位异或. 直接暴力莫 ...

  5. 在论坛中出现的比较难的sql问题:10(删除多表中的同一个外键)

    原文:在论坛中出现的比较难的sql问题:10(删除多表中的同一个外键) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所以,觉得有 ...

  6. element-ui 页面刷新自动弹Message问题

    问题: 通过加载插件的方式引入Message,导致每次页面刷新的时候会自动弹出一个通知消息 该情况只在引入局部插件才会引起 import Vue from 'vue' import 'element- ...

  7. deploy KBA 2167993

    The default trace shows the following error: ****************************************** Unable to cr ...

  8. node.js 微信开发2-消息回复、token获取、自定义菜单

    项目结构 >config/wechat.json 微信公众号的配置文件 >controllers/oauth.js 微信网页授权接口(下一篇再细讲讲) >controllers/we ...

  9. linux 命令 wc

    语法:wc [选项] 文件… 说明:该命令统计给定文件中的字节数.字数.行数.如果没有给出文件名,则从标准输入读取.wc同时也给出所有指定文件的总统计数.字是由空格字符区分开的最大字符串. (1) 统 ...

  10. javascript之ECMAScript:语法的操作标准

    一.如何书写一个javascript代码 javascript代码需要写在javascript标签中才会生效,而javascript标签可以写在任何地方,但考虑到规范化及页面的加载问题,最好是写在bo ...