导语:其他集数可在[线性代数]标籤文章找到。线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流。

Overview: Subspace definition

In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H of Rn is defined as follow:

  1. Zero vector included in H
  2. Subspace spanned by H closed under addition and scalar multiplication

Sketch of proof of property(1): H=Span{v1, v2, v3}, if weights to every columns in H equals to 0, we get a zero vector. If, for all possible linear combinations of H, zero vector is not involved, span of H is not a subspace of Rn. It must belong to another vector space Rx, whose zero vector is included by the span of H. If, for the following, let Q={u,v} be a subspace of Rn and L={z} be a subspace of Rx. L does not contain zero vector in Rn thus not a subspace of Rn.

Column space, Null space

Column space of a matrix A, i.e. Col A, refers to span of columns in A, i.e. all the possible linear combinations of pivot columns in A. (Recall non-pivot columns are simply linear combinations of other pivot columns, so they do not matter in spanning.) Alternatively, it refers to all the possible b where Ax=b is consistent, as illustrated follows:

Nul A, on another hand, refers to the spanning from all possible solutions for Ax=0. Recall when x=0, it is the trivial solution to homogeneous equation. Thus, automatically satisfy requirement (1) in the definition of subspace. The dimension of non-trivial solution must equal to number of columns in A, so the resultant vector would also be 0, satisfying the right-hand side of the equation. For instance, if A is an mxn matrix, Nul(A) must be a subspace for Rn.

Both Col(A) and Nul(A) are subspaces which contain infinitely many vectors in a set, most of them are just the linear combination of few key vectors, the basis vectors. Basis vectors are the most simplified set of linearly independent vectors representing a subspace, as the linear combination of all vectors inside regenerate the subspace. A standard basis is shown below:

There exists some interesting relationship between finding the BASIS for null space and column space for the same matrix A. Take the following matrices as examples. To find Nul(A), simply row reduce it into row echelon form and solve for x, which should automatically generate a set of linearly independent vectors from the FREE variables. To find Col(A), we just need to find the linearly independent vectors in matrix A. In words, whenever an elementary row operation is applied on A, we get a new echelon form. Each of them has its own basis set for their column space. It has great implication, as we know row operations generate new column space from its set of linearly independent columns in the matrix.

Dimension and rank

Dimension refers to the number of vectors in Nul(A) or Col(A), but rank only refers to that in Col(A). Weights assigned to each linearly independent vector within the basis are called coordinates, which is an ordered set of weights to vectors within basis. Given vectors in basis linearly independent, there's only one way for them to generate each 'point' within the corresponding subspace they span. Thus, dimensionality simply refers to number of coordinates/weights to a vector set, thus also refers to the number of vectors within the set. Noted that dimension need not equal to the dimension of Rn. For example, the following shows a two-dimensional subspace of R3, where the subspace only has a dimension of 2. Recalled that since the dimension here is 2, where 2!=3, thus, the basis vector of this set do not span R3. The spanning of vectors in subspace can become a subspace of R3 as each of them is also a three-dimensional vector.

As we have witnessed that Nul(A) comes from free variables while Col(A) comes from basic variables, the number of columns in a matrix A is inferred as follow:

To form a basis for a p-dimensional subspace is simple. Simply pick any p linearly independent vectors from the space will give you a basis for the subspace

Invertibility

All discussion above can be generalized into the invertible matrix theorem covered in earlier posts. Suppose A is an nxn matrix, all of the followings implies A is invertible.

Above basically states that, for a nxn matrix, if it spans Rn, then it must be invertible. And the rules above suggest how to determine if a nxn matrix contains no linearly dependent columns from their rank and dimension. Nothing new.

Examples

(More to come…stay tuned…)

[线性代数] 线性子空间入門 Basic Vector Subspaces的更多相关文章

  1. Delphi APP 開發入門(一)重生的 Delphi

    Delphi APP 開發入門(一)重生的 Delphi 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀 ...

  2. 依賴注入入門——Unity(二)

    參考博客文章http://www.cnblogs.com/kebixisimba/category/130432.html http://www.cnblogs.com/qqlin/tag/Unity ...

  3. GOOGLE搜索從入門到精通V4.0

    1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...

  4. Flask從入門到入土(三)——模板

    模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...

  5. Windows PowerShell 入門(7)-関数編2

    この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...

  6. Windows PowerShell 入門(3)-スクリプト編

    これまでの記事 Windows PowerShell 入門(1)-基本操作編 Windows PowerShell 入門(2)-基本操作編 2 対象読者 Windows PowerShellでコマンド ...

  7. Windows PowerShell 入門(2)-基本操作編 2

    前回に引き続きMicrosoftが提供している新しいシェル.Windows Power Shellの基本操作方法を学びます.基本操作編第2弾の今回は.パイプの使用方法を中心としたコマンドレットの操作方 ...

  8. Delphi APP 開發入門(四)簡易手電筒

    Delphi APP 開發入門(四)簡易手電筒 分享: Share on facebookShare on twitterShare on google_plusone_share   閲讀次數:32 ...

  9. Delphi APP 開發入門(六)Object Pascal 語法初探

    Delphi APP 開發入門(六)Object Pascal 語法初探 分享: Share on facebookShare on twitterShare on google_plusone_sh ...

随机推荐

  1. FTP搭建注意事项

    正常的FTP搭建步骤很简单,随便网搜一篇文章就出来了 下面提出一个网址可供学习 https://blog.csdn.net/m0_38044299/article/details/81627607 但 ...

  2. C# 字符串按设置的格试在前面或后面增加空格或其它字符

    public string lengadd(string stringa, string stringb, int count, int mode) //以stringa的长度,未到count的长度则 ...

  3. elasticsearch 开机自启

    linux下开机自启: 在/etc/init.d目录下新建文件elasticsearch 并敲入shell脚本: #!/bin/sh #chkconfig: #description: elastic ...

  4. shell 实战 -- 基于一个服务启动,关闭,状态检查的脚本

    功能说明: check:检查服务状态,在开启,关闭,状态检查时都会用到这个函数,所以封装起来放到最前面 start:开启服务 stop:关闭服务 fstop:强制关闭 status:检查服务状态 ru ...

  5. putty使用方法

    putty是一种体体积小,无需安装的一款免费安全使用方便的绿色软件,它主要用于远程控制linux系统,只要获取了远程的linux的地址,便可以远程控制linux系统以方便管理,越来越受到各方面的欢迎. ...

  6. vue简单todolist

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. shell 三剑客之 sed 命令详解

    sed 编辑命令 sed 编辑命令对照表 把 /etc/passwd 文件赋值到当前路径下,进行操作 cp /etc/passwd ./ cat -n passwd sed 删除操作 删除 passw ...

  8. springboot系列(七) 项目热加载

    spring为开发者提供了一个名为spring-boot-devtools的模块来使Spring Boot应用支持热部署,提高开发者的开发效率,无需手动重启Spring Boot应用. devtool ...

  9. CentOS7.X+LAMP+zabbix4.2环境下搭建Grafana6.1数据库可视化

    1.GrafanaRPM包部署(yum  install  wget) wget https://dl.grafana.com/oss/release/grafana-6.1.4-1.x86_64.r ...

  10. [postman][API 测试]用Postman做RestAPI测试学习笔记

    痛点:最近有个API网关的兼容性测试任务,需要验证API是否可用,返回值符合预期,如果手工复制粘贴curl命令,繁琐且低效 调研时发现了Postman 这个chrom插件,试用了2天后发现使用起来很方 ...