[线性代数] 线性子空间入門 Basic Vector Subspaces
导语:其他集数可在[线性代数]标籤文章找到。线性子空间是一个大课题,这里先提供一个简单的入门,承接先前关于矩阵代数的讨论,期待与你的交流。
Overview: Subspace definition
In a vector space of Rn, sets of vectors spanning a volume EQUAL TO OR SMALLER THAN that of Rn form subspaces of that vector space of Rn. A subset H of Rn is defined as follow:
- Zero vector included in H
- Subspace spanned by H closed under addition and scalar multiplication
Sketch of proof of property(1): H=Span{v1, v2, v3}, if weights to every columns in H equals to 0, we get a zero vector. If, for all possible linear combinations of H, zero vector is not involved, span of H is not a subspace of Rn. It must belong to another vector space Rx, whose zero vector is included by the span of H. If, for the following, let Q={u,v} be a subspace of Rn and L={z} be a subspace of Rx. L does not contain zero vector in Rn thus not a subspace of Rn.
Column space, Null space
Column space of a matrix A, i.e. Col A, refers to span of columns in A, i.e. all the possible linear combinations of pivot columns in A. (Recall non-pivot columns are simply linear combinations of other pivot columns, so they do not matter in spanning.) Alternatively, it refers to all the possible b where Ax=b is consistent, as illustrated follows:
Nul A, on another hand, refers to the spanning from all possible solutions for Ax=0. Recall when x=0, it is the trivial solution to homogeneous equation. Thus, automatically satisfy requirement (1) in the definition of subspace. The dimension of non-trivial solution must equal to number of columns in A, so the resultant vector would also be 0, satisfying the right-hand side of the equation. For instance, if A is an mxn matrix, Nul(A) must be a subspace for Rn.
Both Col(A) and Nul(A) are subspaces which contain infinitely many vectors in a set, most of them are just the linear combination of few key vectors, the basis vectors. Basis vectors are the most simplified set of linearly independent vectors representing a subspace, as the linear combination of all vectors inside regenerate the subspace. A standard basis is shown below:
There exists some interesting relationship between finding the BASIS for null space and column space for the same matrix A. Take the following matrices as examples. To find Nul(A), simply row reduce it into row echelon form and solve for x, which should automatically generate a set of linearly independent vectors from the FREE variables. To find Col(A), we just need to find the linearly independent vectors in matrix A. In words, whenever an elementary row operation is applied on A, we get a new echelon form. Each of them has its own basis set for their column space. It has great implication, as we know row operations generate new column space from its set of linearly independent columns in the matrix.
Dimension and rank
Dimension refers to the number of vectors in Nul(A) or Col(A), but rank only refers to that in Col(A). Weights assigned to each linearly independent vector within the basis are called coordinates, which is an ordered set of weights to vectors within basis. Given vectors in basis linearly independent, there's only one way for them to generate each 'point' within the corresponding subspace they span. Thus, dimensionality simply refers to number of coordinates/weights to a vector set, thus also refers to the number of vectors within the set. Noted that dimension need not equal to the dimension of Rn. For example, the following shows a two-dimensional subspace of R3, where the subspace only has a dimension of 2. Recalled that since the dimension here is 2, where 2!=3, thus, the basis vector of this set do not span R3. The spanning of vectors in subspace can become a subspace of R3 as each of them is also a three-dimensional vector.
As we have witnessed that Nul(A) comes from free variables while Col(A) comes from basic variables, the number of columns in a matrix A is inferred as follow:
To form a basis for a p-dimensional subspace is simple. Simply pick any p linearly independent vectors from the space will give you a basis for the subspace
Invertibility
All discussion above can be generalized into the invertible matrix theorem covered in earlier posts. Suppose A is an nxn matrix, all of the followings implies A is invertible.
Above basically states that, for a nxn matrix, if it spans Rn, then it must be invertible. And the rules above suggest how to determine if a nxn matrix contains no linearly dependent columns from their rank and dimension. Nothing new.
Examples
(More to come…stay tuned…)
[线性代数] 线性子空间入門 Basic Vector Subspaces的更多相关文章
- Delphi APP 開發入門(一)重生的 Delphi
Delphi APP 開發入門(一)重生的 Delphi 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀 ...
- 依賴注入入門——Unity(二)
參考博客文章http://www.cnblogs.com/kebixisimba/category/130432.html http://www.cnblogs.com/qqlin/tag/Unity ...
- GOOGLE搜索從入門到精通V4.0
1,前言2,摘要3,如何使用本文4,Google簡介5,搜索入門6,初階搜索 6.1,搜索結果要求包含兩個及兩個以上關鍵字 6.2,搜索結果要求不包含某些特定資訊 6.3,搜索結果至少包含多個關鍵字中 ...
- Flask從入門到入土(三)——模板
模板是一個包含響應文本的文件,其中包含佔位變量表示的動態部分,其具體值只是請求上下文中才能知道.使用真實值替換變量,再返回最終得到的響應字符串,這一過程稱爲渲染.爲了渲染模板,Flask使用了一個名爲 ...
- Windows PowerShell 入門(7)-関数編2
この連載では.Microsoftが提供している新しいシェル.Windows Power Shellの使い方を解説します.前回に引き続きPowerShellにおける関数の取り扱いとして.変数と関数のスコ ...
- Windows PowerShell 入門(3)-スクリプト編
これまでの記事 Windows PowerShell 入門(1)-基本操作編 Windows PowerShell 入門(2)-基本操作編 2 対象読者 Windows PowerShellでコマンド ...
- Windows PowerShell 入門(2)-基本操作編 2
前回に引き続きMicrosoftが提供している新しいシェル.Windows Power Shellの基本操作方法を学びます.基本操作編第2弾の今回は.パイプの使用方法を中心としたコマンドレットの操作方 ...
- Delphi APP 開發入門(四)簡易手電筒
Delphi APP 開發入門(四)簡易手電筒 分享: Share on facebookShare on twitterShare on google_plusone_share 閲讀次數:32 ...
- Delphi APP 開發入門(六)Object Pascal 語法初探
Delphi APP 開發入門(六)Object Pascal 語法初探 分享: Share on facebookShare on twitterShare on google_plusone_sh ...
随机推荐
- C#-System.Dynamic.ExpandoObject
dynamic dynamicObject = new System.Dynamic.ExpandoObject(); dynamicObject.Id = Guid.NewGuid(); (dyna ...
- Redis—.Net中的使用
StackExchange.Redis使用以及封装 来源:http://www.cnblogs.com/qtqq/p/5951201.html,https://www.cnblogs.com/xsj1 ...
- CentOS 6.5 iptables原理详解以及功能说明
CentOS 6.5 iptables原理详解以及功能说明 来源 https://blog.51cto.com/tanxw/1389114 前言 iptables其实就是Linux下的一个开源的信息过 ...
- 炫酷的可视化工具包——cufflinks
前言 学过Python数据分析的朋友都知道,在可视化的工具中,有很多优秀的三方库,比如matplotlib,seaborn,plotly,Boken,pyecharts等等.这些可视化库都有自己的特点 ...
- log4net SmtpAppender 踩坑总结
错误集合: System.Net.Mail.SmtpException: 命令顺序不正确. 服务器响应为:Error: need EHLO and AUTH first ! System.Net.Ma ...
- TR-TR模块资料汇总
转载: TR模块培训 https://www.docin.com/p-1704805923.html 现金管理(Cash Management)和预算控制(Cash Budget Management ...
- C++——调用优化
原始代码 #include<iostream> using namespace std; class Test { public: //以参数列表形式对数据成员进行初始化 Test() : ...
- apache配置https加密传输
环境:两台linux虚拟机和一台windows本机,一台充当要使用https传输的web服务器apache2.4.4,另一台CA服务器,window测试https配置. 1.CA服务器生成私有CA 1 ...
- 分享一个自制的USB转HART模块
HART协议是一种用于现场智能仪表和控制室设备之间的通讯协议.使用USB转HART模块可以很方便的对HART总线上的数据进行监控,并且可以远程控制.操作和校准HART设备.设计的模块主要采用的是USB ...
- Java面试题及答案解析
面向对象编程(OOP) Java是一个支持并发.基于类和面向对象的计算机编程语言.下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改. 代码复用. 增强代码的可靠性和灵活性. 增加代码 ...