论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection
核心思想
基于阅读理解中QA系统的样本中可能混有对抗样本的情况,在寻找答案时,首先筛选出可能包含答案的句子,再做进一步推断。
方法
Part 1
given: 段落C query Q
段落切分成句子:
每个句子和Q合并:
使用依存句法分析得到表示:
基于T Si T Q ,分别构建 Tree-LSTMSi Tree-LSTMQ
两个Tree-LSTMs的叶结点的输入都是GloVe word vectors
输出隐向量分别是 hSi hQ
hSi hQ连接起来并传递给一个前馈神经网络来计算出Si包含Q的答案的可能性
loss 和前馈神经网络follows语义相关性网络
有监督的训练时,si包含答案为1,否则为0。
Part 2
计算最可能答案:
L代表QA似然神经网络预测的似然
将一对句子S*和Q传递给预先训练好的单BiDAF(Seo et al., 2016),生成Q的答案a^。
实验
数据集:sampled from the training set of SQuAD v1.1
there are 87,599 queries of 18,896 paragraphs in the training set of SQuAD v1.1. While each query refers to one paragraph, a paragraph may refer to multiple queries.
d=87,599 is the number of queries. The set D contains 440,135 sentence pairs, among which 87,306 are positive instances and 352,829 are negative instances.
positive instance: ,前者包含后者的答案。
两种采样方法: pair-level sampling ,paragraph-level sampling
1. In pair-level sampling, 45,000 positive instances and 45,000 negative instances are randomly selected from D as the training set.
2. paragraph-level sampling 首先随机选Qk,然后从Dk中随机采样出一个positive instance 和一个negative instance
Each set has 90,000 instances. The validation set with 3,000 instances are sampled through these two methods as well.
测试集:ADDANY adversarial dataset : 1,000 paragraphs and each paragraph refers to only one query. By splitting and combining, 6,154 sentence pairs are obtained.
实验设置:The dimension of GloVe word vectors (Pennington et al., 2014) is set as 300. The sentence scoring neural network is trained by Adagrad (Duchi et al., 2011) with a learning rate of 0.01 and a batch size of 25. Model parameters are regularized by a 10-4 strength of per-minibatch L2 regularization.
结果
评价标准:Macro-averaged F1 score (Rajpurkar et al., 2016; Jia and Liang, 2017).
对于table2,可以理解为二分类问题。
consider three types of sentences: adversarial sentences, answer sentences, and the sentences that include the answers returned by the single BiDAF system.
the x-axis denotes the ranked position for each sentence according to its likelihood score , while the y-axis is the number of sentences for each type ranked at this position.
It shows that among the 1,000 (C;Q) pairs, 647 and 657 answer sentences are selected by the QA Likelihood neural network based on pair-level sampling and paragraph-level sampling respectively, but only 136 and 141 adversarial sentences are selected by the QA Likelihood neural network.
结论
对于ADDSENT的没有做。
论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection的更多相关文章
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文阅读 | Universal Adversarial Triggers for Attacking and Analyzing NLP
[code] [blog] 主要思想和贡献 以前,NLP中的对抗攻击一般都是针对特定输入的,那么他们对任意的输入是否有效呢? 本文搜索通用的对抗性触发器:与输入无关的令牌序列,当连接到来自数据集的任何 ...
- 论文阅读 | Combating Adversarial Misspellings with Robust Word Recognition
对抗防御可以从语义消歧这个角度来做,不同的模型,后备模型什么的,我觉得是有道理的,和解决未登录词的方式是类似的,毕竟文本方面的对抗常常是修改为UNK来发生错误的.怎么使用backgroud model ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- 《Explaining and harnessing adversarial examples》 论文学习报告
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-27 1 背景 Sz ...
- 【论文阅读】Deep Adversarial Subspace Clustering
导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
随机推荐
- Codeforces Round #589 (Div. 2) B. Filling the Grid
链接: https://codeforces.com/contest/1228/problem/B 题意: Suppose there is a h×w grid consisting of empt ...
- HDU 6060 - RXD and dividing | 2017 Multi-University Training Contest 3
/* HDU 6060 - RXD and dividing [ 分析,图论 ] | 2017 Multi-University Training Contest 3 题意: 给一个 n 个节点的树, ...
- hdu 6141 I am your Father!
题 OvO http://acm.hdu.edu.cn/showproblem.php?pid=6141 (2017 Multi-University Training Contest - Team ...
- [Python自学] day-21 (1) (请求信息、html模板继承与导入、自定义模板函数、自定义分页)
一.路由映射的参数 1.映射的一般使用 在app/urls.py中,我们定义URL与视图函数之间的映射: from django.contrib import admin from django.ur ...
- Luogu P2516 [HAOI2010]最长公共子序列 DP
首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...
- java+http文件夹上传
在web项目中上传文件夹现在已经成为了一个主流的需求.在OA,或者企业ERP系统中都有类似的需求.上传文件夹并且保留层级结构能够对用户行成很好的引导,用户使用起来也更方便.能够提供更高级的应用支撑. ...
- hadoop patch
ERROR org.apache.hadoop.hdfs.server.blockmanagement.BlockManager: ReplicationMonitor thread received ...
- Python之Javascript
1.JavaScript 被设计用来向 HTML 页面添加交互行为. 2.JavaScript 是一种脚本语言(脚本语言是一种轻量级的编程语言). 3.JavaScript 由数行可执行计算机代码组成 ...
- Beta冲刺(1/4)
队名:福大帮 组长博客链接: https://www.cnblogs.com/mhq-mhq/p/11990568.html 作业博客 : https://edu.cnblogs.com/campus ...
- LeetCode 279. 完全平方数(Perfect Squares)
题目描述 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n.你需要让组成和的完全平方数的个数最少. 示例 1: 输入: n = 12 输出: 3 解释 ...