论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection
核心思想
基于阅读理解中QA系统的样本中可能混有对抗样本的情况,在寻找答案时,首先筛选出可能包含答案的句子,再做进一步推断。
方法
Part 1
given: 段落C query Q
段落切分成句子:
每个句子和Q合并:
使用依存句法分析得到表示:
基于T Si T Q ,分别构建 Tree-LSTMSi Tree-LSTMQ
两个Tree-LSTMs的叶结点的输入都是GloVe word vectors
输出隐向量分别是 hSi hQ
hSi hQ连接起来并传递给一个前馈神经网络来计算出Si包含Q的答案的可能性
loss 和前馈神经网络follows语义相关性网络
有监督的训练时,si包含答案为1,否则为0。
Part 2
计算最可能答案:
L代表QA似然神经网络预测的似然
将一对句子S*和Q传递给预先训练好的单BiDAF(Seo et al., 2016),生成Q的答案a^。
实验
数据集:sampled from the training set of SQuAD v1.1
there are 87,599 queries of 18,896 paragraphs in the training set of SQuAD v1.1. While each query refers to one paragraph, a paragraph may refer to multiple queries.
d=87,599 is the number of queries. The set D contains 440,135 sentence pairs, among which 87,306 are positive instances and 352,829 are negative instances.
positive instance: ,前者包含后者的答案。
两种采样方法: pair-level sampling ,paragraph-level sampling
1. In pair-level sampling, 45,000 positive instances and 45,000 negative instances are randomly selected from D as the training set.
2. paragraph-level sampling 首先随机选Qk,然后从Dk中随机采样出一个positive instance 和一个negative instance
Each set has 90,000 instances. The validation set with 3,000 instances are sampled through these two methods as well.
测试集:ADDANY adversarial dataset : 1,000 paragraphs and each paragraph refers to only one query. By splitting and combining, 6,154 sentence pairs are obtained.
实验设置:The dimension of GloVe word vectors (Pennington et al., 2014) is set as 300. The sentence scoring neural network is trained by Adagrad (Duchi et al., 2011) with a learning rate of 0.01 and a batch size of 25. Model parameters are regularized by a 10-4 strength of per-minibatch L2 regularization.
结果
评价标准:Macro-averaged F1 score (Rajpurkar et al., 2016; Jia and Liang, 2017).
对于table2,可以理解为二分类问题。
consider three types of sentences: adversarial sentences, answer sentences, and the sentences that include the answers returned by the single BiDAF system.
the x-axis denotes the ranked position for each sentence according to its likelihood score , while the y-axis is the number of sentences for each type ranked at this position.
It shows that among the 1,000 (C;Q) pairs, 647 and 657 answer sentences are selected by the QA Likelihood neural network based on pair-level sampling and paragraph-level sampling respectively, but only 136 and 141 adversarial sentences are selected by the QA Likelihood neural network.
结论
对于ADDSENT的没有做。
论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection的更多相关文章
- [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks
[论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...
- [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...
- 论文阅读 | Universal Adversarial Triggers for Attacking and Analyzing NLP
[code] [blog] 主要思想和贡献 以前,NLP中的对抗攻击一般都是针对特定输入的,那么他们对任意的输入是否有效呢? 本文搜索通用的对抗性触发器:与输入无关的令牌序列,当连接到来自数据集的任何 ...
- 论文阅读 | Combating Adversarial Misspellings with Robust Word Recognition
对抗防御可以从语义消歧这个角度来做,不同的模型,后备模型什么的,我觉得是有道理的,和解决未登录词的方式是类似的,毕竟文本方面的对抗常常是修改为UNK来发生错误的.怎么使用backgroud model ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages
Generating Fluent Adversarial Examples for Natural Languages ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...
- 《Explaining and harnessing adversarial examples》 论文学习报告
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-27 1 背景 Sz ...
- 【论文阅读】Deep Adversarial Subspace Clustering
导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...
- Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...
随机推荐
- CodeForces 835D - Palindromic characteristics | Codeforces Round #427 (Div. 2)
证明在Tutorial的评论版里 /* CodeForces 835D - Palindromic characteristics [ 分析,DP ] | Codeforces Round #427 ...
- MSMQ介绍
最近的项目中用到了MSMQ,简单的使用到了它,现总结下.有些是网上的资料有些是自己的笔记. MSMQ理解 Message Queue(微软消息队列)是在多个不同的应用之间实现相互通信的一种异步传输模式 ...
- 【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)
title: [线性代数]4-1:四个正交子空间(Orthogonality of the Four Subspace) categories: Mathematic Linear Algebra k ...
- IDT系列:(一)初探IDT,Interrupt Descriptor Table,中断描述符表
原文: IDT系列:(一)初探IDT,Interrupt Descriptor Table,中断描述符表 IDT,Interrupt Descriptor Table,中断描述符表是CPU用来处理中 ...
- Nginx 499的问题
PHP 异步 HTTP 与 NGINX 499 PHP 异步 HTTP 在 PHP 代码中提交异步 HTTP 请求比较常用的方式是通过 fsockopen/fwrite/fclose 来实现,请参考如 ...
- 基于CentOS 7下最小化安装的操作系统搭建Zabbix3.0环境
环境说明 系统版本:CentOS Linux release 7.3.1611 (Core) 内核版本:3.10.0-514.el7.x86_64 Httpd版本:Apache/2.4.6 (Cent ...
- JavaWeb_(Spring框架)Spring配置文件
一.什么是spring IOC IOC(Inversion of Control)即控制反转,在我们以往的编程中如果需要一个bean往往需要去手动去new一个出来.而spring帮我们解决了这个问题, ...
- antd-mobile的DatePicker分钟精度半小时
项目要求,在时间选择上需要精确到分钟,且分钟只能半小时,既0分钟或者是30分钟. 前期引用的时间控件是antd-mobile的DatePicker组件,具体用法可参考:https://mobile.a ...
- SQL和HQL 区别浅析!!!
hql是面向对象查询,格式:from + 类名 + 类对象 + where + 对象的属性 sql是面向数据库表查询,格式:from + 表名 + where + 表中字段 1.查询 一般在hiber ...
- Spring事件监听ApplicationListener源码流程分析
spring的事件机制是基于观察者设计模式的,ApplicationListener#onApplicationEvent(Event)方法,用于对事件的处理 .在容器初始化的时候执行注册到容器中的L ...