核心思想

基于阅读理解中QA系统的样本中可能混有对抗样本的情况,在寻找答案时,首先筛选出可能包含答案的句子,再做进一步推断。

方法

Part 1

given: 段落C   query Q

段落切分成句子:

每个句子和Q合并:

使用依存句法分析得到表示:

基于T Si T Q ,分别构建 Tree-LSTMSi  Tree-LSTMQ

两个Tree-LSTMs的叶结点的输入都是GloVe word vectors

输出隐向量分别是  hSi  hQ

hSi  hQ连接起来并传递给一个前馈神经网络来计算出Si包含Q的答案的可能性

loss 和前馈神经网络follows语义相关性网络

有监督的训练时,si包含答案为1,否则为0。

Part 2

计算最可能答案:

L代表QA似然神经网络预测的似然

将一对句子S*和Q传递给预先训练好的单BiDAF(Seo et al., 2016),生成Q的答案a^。

实验

数据集:sampled from the training set of SQuAD v1.1

there are 87,599 queries of 18,896 paragraphs in the training set of SQuAD v1.1. While each query refers to one paragraph, a paragraph may refer to multiple queries.

d=87,599 is the number of queries. The set D contains 440,135 sentence pairs, among which 87,306 are positive instances and 352,829 are negative instances.

positive instance: ,前者包含后者的答案。

两种采样方法: pair-level sampling ,paragraph-level sampling

1. In pair-level sampling, 45,000 positive instances and 45,000 negative instances are randomly selected from D as the training set.

2. paragraph-level sampling 首先随机选Qk,然后从Dk中随机采样出一个positive instance 和一个negative instance

Each set has 90,000 instances. The validation set with 3,000 instances are sampled through these two methods as well.

测试集:ADDANY adversarial dataset : 1,000 paragraphs and each paragraph refers to only one query. By splitting and combining, 6,154 sentence pairs are obtained.

实验设置:The dimension of GloVe word vectors (Pennington et al., 2014) is set as 300. The sentence scoring neural network is trained by Adagrad (Duchi et al., 2011) with a learning rate of 0.01 and a batch size of 25. Model parameters are regularized by a 10-4 strength of per-minibatch L2 regularization.

结果

评价标准:Macro-averaged F1 score (Rajpurkar et al., 2016; Jia and Liang, 2017).

对于table2,可以理解为二分类问题。

consider three types of sentences: adversarial sentences, answer sentences, and the sentences that include the answers returned by the single BiDAF system.

the x-axis denotes the ranked position for each sentence according to its likelihood score , while the y-axis is the number of sentences for each type ranked at this position.

It shows that among the 1,000 (C;Q) pairs, 647 and 657 answer sentences are selected by the QA Likelihood neural network based on pair-level sampling and paragraph-level sampling respectively, but only 136 and 141 adversarial sentences are selected by the QA Likelihood neural network.

结论

对于ADDSENT的没有做。

论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection的更多相关文章

  1. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

  2. [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding

    [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...

  3. 论文阅读 | Universal Adversarial Triggers for Attacking and Analyzing NLP

    [code] [blog] 主要思想和贡献 以前,NLP中的对抗攻击一般都是针对特定输入的,那么他们对任意的输入是否有效呢? 本文搜索通用的对抗性触发器:与输入无关的令牌序列,当连接到来自数据集的任何 ...

  4. 论文阅读 | Combating Adversarial Misspellings with Robust Word Recognition

    对抗防御可以从语义消歧这个角度来做,不同的模型,后备模型什么的,我觉得是有道理的,和解决未登录词的方式是类似的,毕竟文本方面的对抗常常是修改为UNK来发生错误的.怎么使用backgroud model ...

  5. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  6. 论文阅读 | Generating Fluent Adversarial Examples for Natural Languages

    Generating Fluent Adversarial Examples for Natural Languages   ACL 2019 为自然语言生成流畅的对抗样本 摘要 有效地构建自然语言处 ...

  7. 《Explaining and harnessing adversarial examples》 论文学习报告

    <Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Sz ...

  8. 【论文阅读】Deep Adversarial Subspace Clustering

    导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...

  9. Adversarial Examples for Semantic Segmentation and Object Detection 阅读笔记

    Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, ...

随机推荐

  1. CodeForces 835D - Palindromic characteristics | Codeforces Round #427 (Div. 2)

    证明在Tutorial的评论版里 /* CodeForces 835D - Palindromic characteristics [ 分析,DP ] | Codeforces Round #427 ...

  2. MSMQ介绍

    最近的项目中用到了MSMQ,简单的使用到了它,现总结下.有些是网上的资料有些是自己的笔记. MSMQ理解 Message Queue(微软消息队列)是在多个不同的应用之间实现相互通信的一种异步传输模式 ...

  3. 【线性代数】4-1:四个正交子空间(Orthogonality of the Four Subspace)

    title: [线性代数]4-1:四个正交子空间(Orthogonality of the Four Subspace) categories: Mathematic Linear Algebra k ...

  4. IDT系列:(一)初探IDT,Interrupt Descriptor Table,中断描述符表

    原文:  IDT系列:(一)初探IDT,Interrupt Descriptor Table,中断描述符表 IDT,Interrupt Descriptor Table,中断描述符表是CPU用来处理中 ...

  5. Nginx 499的问题

    PHP 异步 HTTP 与 NGINX 499 PHP 异步 HTTP 在 PHP 代码中提交异步 HTTP 请求比较常用的方式是通过 fsockopen/fwrite/fclose 来实现,请参考如 ...

  6. 基于CentOS 7下最小化安装的操作系统搭建Zabbix3.0环境

    环境说明 系统版本:CentOS Linux release 7.3.1611 (Core) 内核版本:3.10.0-514.el7.x86_64 Httpd版本:Apache/2.4.6 (Cent ...

  7. JavaWeb_(Spring框架)Spring配置文件

    一.什么是spring IOC IOC(Inversion of Control)即控制反转,在我们以往的编程中如果需要一个bean往往需要去手动去new一个出来.而spring帮我们解决了这个问题, ...

  8. antd-mobile的DatePicker分钟精度半小时

    项目要求,在时间选择上需要精确到分钟,且分钟只能半小时,既0分钟或者是30分钟. 前期引用的时间控件是antd-mobile的DatePicker组件,具体用法可参考:https://mobile.a ...

  9. SQL和HQL 区别浅析!!!

    hql是面向对象查询,格式:from + 类名 + 类对象 + where + 对象的属性 sql是面向数据库表查询,格式:from + 表名 + where + 表中字段 1.查询 一般在hiber ...

  10. Spring事件监听ApplicationListener源码流程分析

    spring的事件机制是基于观察者设计模式的,ApplicationListener#onApplicationEvent(Event)方法,用于对事件的处理 .在容器初始化的时候执行注册到容器中的L ...