如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?
链接:https://www.zhihu.com/question/326034346/answer/730051338
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
回顾一下围绕normalization的一些工作(由最新到最旧的BatchNorm):
2019,Weight Standardization(没有发表,但是有大佬Alan Yuille加持)
Weight Standardization 2019
WS叫权重标准化,建立在BN可以平滑损失landscape/BN可以平滑激活值这个观点上,进一步提升GN的效果匹配到BN的水平上,针对GN在micro-batch训练时性能不及BN。WS的原理是:减小损失和梯度的Lipschitz常数。
2019,Dynamic Normalization
Differentiable Dynamic Normalization for Learning Deep Representation ICML 2019
跟SN类似,加入了GN。
2019,Switchable Normalization
Differentiable Learning-to-Normalize via Switchable Normalization ICLR 2019
SN是为每一层选择/学习适当的归一化层(IN、LN和BN),在ImageNet,COCO,CityScapes,ADE20K和Kinetics等数据集上进行实验,应用涵盖图像分类、物体检测、语义分割和视频分类。
2019,Iterative Normalization(CVPR)
Iterative Normalization Beyond Standardization towards Efficient Whitening CVPR 2019
DBN的高效版本
2019,Spatially-Adaptive Normalization(CVPR)
Semantic Image Synthesis with Spatially-Adaptive Normalization CVPR 2019
用于图像生成
2018,Gradient Normalization(ICML)
GradNorm Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks ICML 2018
2018,Kalman Normalization
Kalman Normalization Normalizing Internal Representations Across Network Layers NIPS 2018
2018,Decorrelated Batch Normalization
Decorrelated Batch Normalization CVPR 2018
BN+白化
2018,Spectral Normalization(ICLR)
Spectral Normalization for Generative Adversarial Networks ICLR 2018
2018,Group Normalization(ECCV)
Group Normalization ECCV 2018
用于物体检测和语义分割等batch size很小的时候
GroupNorm是InstanceNorm的变体。
2018,Batch-Instance Normalization
Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks NIPS 2018
2018,Instance-Batch Normalization
Two at Once Enhancing Learning and Generalization Capacities via IBN-Net ECCV 2018
2016,Layer Normalization(没有发表)
用于RNN
2016,Instance Normalization(没有发表,但是经过了实践检验)
用于风格迁移
2016,Weight Normalization(NIPS)
2015,Batch Normalization(ICML)
用于卷积网络ConvNet和图像分类
如何理解归一化(Normalization)对于神经网络(深度学习)的帮助?的更多相关文章
- 开源脉冲神经网络深度学习框架——惊蛰(SpikingJelly)
开源脉冲神经网络深度学习框架--惊蛰(SpikingJelly) 背景 近年来神经形态计算芯片发展迅速,大量高校企业团队跟进,这样的芯片运行SNN的能效比与速度都超越了传统的通用计算设备.相应的,神经 ...
- 深度学习与CV教程(6) | 神经网络训练技巧 (上)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 深度学习与CV教程(4) | 神经网络与反向传播
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 深度学习教程 | Seq2Seq序列模型和注意力机制
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-det ...
- 深度学习与CV教程(2) | 图像分类与机器学习基础
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 深度学习哪家强?吴恩达、Udacity和Fast.ai的课程我们替你分析好了
http://www.jianshu.com/p/28f5473c66a3 翻译 | AI科技大本营(rgznai100) 参与 | reason_W 引言 过去2年,我一直积极专注于深度学习领域.我 ...
- 知识图谱与机器学习 | KG入门 -- Part1-b 图深度学习
介绍 我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric. 在上一篇文章中,我们对机器学习给出了新的定义: 机器学习是一种自动发现Data Fabric中隐藏的&quo ...
- 谷歌大神Jeff Dean:大规模深度学习最新进展 zz
http://www.tuicool.com/articles/MBBbeeQ 在AlphaGo与李世石比赛期间,谷歌天才工程师Jeff Dean在Google Campus汉城校区做了一次关于智能计 ...
- 深度学习系列之CNN核心内容
导读 怎么样来理解近期异常火热的深度学习网络?深度学习有什么亮点呢?答案事实上非常简答.今年十月份有幸參加了深圳高交会的中科院院士论坛.IEEE fellow汤晓欧做了一场精彩的报告,这个问题被汤大神 ...
- 读李宏毅《一天看懂深度学习》——Deep Learning Tutorial
大牛推荐的入门用深度学习导论,刚拿到有点懵,第一次接触PPT类型的学习资料,但是耐心看下来收获还是很大的,适合我这种小白入门哈哈. 原PPT链接:http://www.slideshare.net/t ...
随机推荐
- treeview判断节点是不是已存在
/// <summary> /// 判断treeView的节点是否已存在 treeView1.Nodes[0].Nodes /// </summary& ...
- java -cp 用法介绍
java -cp 和 -classpath 一样,是指定类运行所依赖其他类的路径,通常是类库,jar包之类,需要全路径到jar包,window上分号“;” 分隔,linux上是分号“:”分隔.不支持通 ...
- MySQL ALTER命令-修改数据表名或者修改数据表字段
需要修改数据表名或者修改数据表字段时,就需要使用到MySQL ALTER命令. 删除,添加或修改表字段 如下命令使用了 ALTER 命令及 DROP 子句来删除表的 i 字段: ALTER TABLE ...
- tensorflow查看ckpt各节点名称
from tensorflow.python import pywrap_tensorflowimport os checkpoint_path=os.path.join('output/res101 ...
- 一文搞定HashMap的实现原理和面试
原文 https://juejin.im/post/5d09f2d56fb9a07ec7551fb0 HashMap在日常开发中基本是天天见的,而且都知道什么时候需要用HashMap,根据Key存取 ...
- git clone https://chromium.googlesource.com/失败
一.现象 连接着vpn,网页上可以直接打开网站,但是使用terminal 执行git clone https://chromium.googlesource.com/xxxx时, 报错 ...
- RocketMQ采坑记
先来一篇解释比较多的实例 https://www.cnblogs.com/super-d2/p/4154541.html No route info of this topic, PushTopic ...
- NLP之TF-IDF与BM25原理探究
前言 本文主要是对TF-IDF和BM25在公式推演.发展沿革方面的演述,全文思路.图片基本来源于此篇公众号推文<搜索中的权重度量利器: TF-IDF和BM25>,侵删. 一 术语 TF: ...
- Django学习参考资料
0. HTTP协议简介http://www.cnblogs.com/maple-shaw/articles/9060408.html 1. 路由系统https://www.cnblogs.com/ma ...
- 二分类Logistic回归模型
Logistic回归属于概率型的非线性回归,分为二分类和多分类的回归模型.这里只讲二分类. 对于二分类的Logistic回归,因变量y只有“是.否”两个取值,记为1和0.这种值为0/1的二值品质型变量 ...