BZOJ2144 跳跳棋[建模+LCA]
思维题,思路比较神仙。
个人思路过程:个人只想到了只要中间棋子开始向外跳了,以后就不应该向内跳了,这样很蠢。所以应该要么先向内跳一会,要么直接开始中间的向外跳。不知道怎么处理,就卡住了。
20pts:暴力BFS。
事实上,这题的解题关键就在于一次只允许跳过1颗棋子,这表明向内跳只能是距离中间棋子近的那个向内跳,跳法唯一。
再看向外跳是有两种的,中间的子越过左子,或者越过右子。发现中间的子向外跳和外侧的子向内跳是一个可逆过程。
假设向外跳中,向左跳是左儿子,向右跳是右儿子,那么这两个儿子有共同且唯一的父亲,也就是向内跳的操作,这样的一棵二叉树恰好与上述情形相对应。
这样,如果要判断是否有解,只要看这两个状态一直向内跳,到不能再向内(与中间子距离相等)时,也就是到了树根,如果树根相同,则有解,不同的话肯定无解。因为树根所有向外跳的状态构成了一个封闭的状态集合,不同集合无交集。
有解的话也就是求树上两点最短距离了。但是由于数据过大,没办法建树,而且一步一步跳显得很慢,$O(depth)$。为了加速,可以采用取模,在纸上画一下即可发现当两个棋子反复互相跳过的时候,实际可以取模处理,详见code。
这样,采用倍增lca思想,不断向上跳即可。$O(depth\text{log}depth)$。
WA*1:line32code手残打错。。以后敲代码敲错的情况尽量少犯
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define dbg(x) cerr << #x << " = " << x <<endl
using namespace std;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline char MIN(T&A,T B){return A>B?(A=B,):;}
template<typename T>inline char MAX(T&A,T B){return A<B?(A=B,):;}
template<typename T>inline void _swap(T&A,T&B){A^=B^=A^=B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
struct sangen{
int x,y,z;
sangen(int x=,int y=,int z=):x(x),y(y),z(z){}
inline bool operator ==(const sangen&B)const{return x==B.x&&y==B.y&&z==B.z;}
inline bool operator !=(const sangen&B)const{return (x^B.x)||(y^B.y)||(z^B.z);}
inline void shiage(){if(x>y)swap(x,y);if(x>z)swap(x,z);if(y>z)swap(y,z);}
inline void print(){printf("x=%d y=%d z=%d\n",x,y,z);}
};
inline sangen tobi(sangen A,int k){
int a=A.y-A.x,b=A.z-A.y,tmp;
while((a^b)&&k){
if(a>b)tmp=(a-)/b,k>=tmp?(k-=tmp,a%=b,!a&&(a=b)):(a-=k*b,k=),A.y=A.x+a,A.z=A.y+b;
else tmp=(b-)/a,k>=tmp?(k-=tmp,b%=a,!b&&(b=a)):(b-=k*a,k=),A.y=A.z-b,A.x=A.y-a;
}
return A;
}
int d1,d2,k;
inline sangen get_root(sangen A){
int a=A.y-A.x,b=A.z-A.y;k=;
while(a^b){
if(a>b)k+=(a-)/b,a%=b,!a&&(a=b),A.y=A.x+a,A.z=A.y+b;
else k+=(b-)/a,b%=a,!b&&(b=a),A.y=A.z-b,A.x=A.y-a;
}
return A;
}
sangen A,B,tmp1,tmp2;
inline int lca(){
if(d1<d2)B=tobi(B,d2-d1);
else A=tobi(A,d1-d2);//A.print(),B.print();
if(A==B)return abs(d1-d2);
int d=_min(d1,d2),ret=abs(d1-d2);
for(register int i=__lg(d);~i;--i){//dbg(i);
tmp1=tobi(A,<<i);tmp2=tobi(B,<<i);//tmp1.print(),tmp2.print();
if(tmp1!=tmp2)A=tmp1,B=tmp2,ret+=<<i;
}
return ret+;
} int main(){//freopen("test.in","r",stdin);//freopen("test.ans","w",stdout);
read(A.x),read(A.y),read(A.z),read(B.x),read(B.y),read(B.z);
A.shiage(),B.shiage();
sangen tmp1=get_root(A);d1=k;
sangen tmp2=get_root(B);d2=k;//dbg(d1),dbg(d2);
if(tmp1!=tmp2){puts("NO");return ;}
printf("YES\n%d\n",lca());
return ;
}
启示:应当根据性质发现这样一种树形关系。当发现这种变换问题且数据较大,考虑图论建模
BZOJ2144 跳跳棋[建模+LCA]的更多相关文章
- BZOJ2144跳跳棋——LCA+二分
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
- 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】
P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...
- bzoj2144 跳跳棋 二分
[bzoj2144]跳跳棋 Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位 ...
- BZOJ2144: 跳跳棋
传送门 神题一道. 考虑题目性质.首先对于一个状态,只存在四种情况,即最左/右边的点跳到中间,中间的点跳到左/右.而对于一个状态,显然第一种情况的两种分支不能同时存在,那么题目就可以理解为从$(a,b ...
- bzoj2144: 跳跳棋(二分/倍增)
思维好题! 可以发现如果中间的点要跳到两边有两种情况,两边的点要跳到中间最多只有一种情况. 我们用一个节点表示一种状态,那么两边跳到中间的状态就是当前点的父亲,中间的点跳到两边的状态就是这个点的两个儿 ...
- 跳跳棋——二分+建模LCA
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
- [BZOJ2144][国家集训队2011]跳跳棋
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上. 每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\),\(c\)这三个位置. 我们要通 ...
- 【LCA】bzoj 2144:跳跳棋
2144: 跳跳棋 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 248 Solved: 121[Submit][Status][Discuss] ...
- bzoj2144 【国家集训队2011】跳跳棋
Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...
随机推荐
- sql中级语句
创建联结 select n_title,n_content,t_name,t_memo from nrc_news,nrc_type where nrc_news.t_id=nrc_type.t_id ...
- [bzoj3887][Usaco2015 Jan]Grass Cownoisseur_trajan_拓扑排序_拓扑序dp
[Usaco2015 Jan]Grass Cownoisseur 题目大意:给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在 ...
- java分词工具hanlp介绍
前几天(6月28日),在第23届中国国际软件博览会上,hanlp这款自然语言处理工具荣获了“2019年第二十三届中国国际软件博览会优秀产品”. HanLP是由一系列模型预算法组成的工具包,结合深度神经 ...
- 【2018】Python面试题【web框架】
1.谈谈你对http协议的认识. HTTP协议(HyperText Transfer Protocol,超文本传输协议)是用于从WWW服务器传输超文本到本地浏览器的传送协议.它可以使浏览器更加高效,使 ...
- Centos删除多余的Linux内核
删除开机多余kernel(centos) yum update 命令会大范围升级,有时候linux内核也会升级,升级后开机画面就会出现多个内核供你选择,所有强迫症的我需要删除旧的 ⒈查看正在使用的内核 ...
- tp5支付宝和微信支付
一.生成二维码给用户进行扫码支付 1.先在vendor目录下加入支付宝和微信支付的引用 2.付款处调用 /** * 订单支付接口 * * @api {post} {:url('order/pay')} ...
- 对CSRF(跨站请求伪造)的理解
一.什么是CSRF? CSRF是Cross Site Request Forgery的缩写,翻译过来就是跨站请求伪造.那么什么是跨站请求伪造呢?让我一个词一个词的解释: 1.跨站:顾名思义,就是从一个 ...
- python-day7(正式学习)
目录 数字类型内置方法 整形内置方法(int) 常用操作+内置方法 是否可变 浮点型内置方法(float) 常用操作+内置方法 是否可变 字符串内置方法 常用操作+内置方法 是否可变 数字类型内置方法 ...
- Redis迁移键
迁移键: move key db 用于在Redis内部进行数据迁移 dump key + restore key ttl value 可以实现在不同的Redis实例之间进行数据迁移 127.0.0.1 ...
- Win32汇编过程与宏调用
汇编语言(assembly language)是一种用于电子计算机.微处理器.微控制器或其他可编程器件的低级语言,亦称为符号语言.在汇编语言中,用助记符(Mnemonics)代替机器指令的操作码,用地 ...