一、前置安装

1)JDK

2)Hadoop伪分布式集群

二、Scala安装

1)解压Scala安装包

2)环境变量

SCALA_HOME = C:\ProgramData\scala-2.10.6
Path = %SCALA_HOME%\bin

3)测试

三、Spark安装

1)解压Spark安装包

2)环境变量

SPARK_HOME = C:\ProgramData\spark-1.6.-bin-hadoop2.
Path = %SPARK_HOME%\bin

3)测试

http://localhost:4040/jobs/

四、运行wordcounut程序

1)启动Hadoop集群

cd C:\ProgramData\hadoop-2.7.\sbin
C:\ProgramData\hadoop-2.7.\sbin>start-all.cmd
C:\ProgramData\hadoop-2.7.\sbin>jps

2)创建word.txt

3.1)读取Hadoop的HDFS文件运行WordCount

1、上传word.txt到Hdfs

hadoop fs -put C:\Projects\WordCount\word.txt /Demo/word.txt

2、启动spark-shell

3、输入Scala命令

sc.textFile("hdfs://localhost:9000/Demo/word.txt").flatMap(x => x.split("\t")).map(x=>(x,1)).reduceByKey(_+_).collect()

3.2)读取本地文件运行WordCount

1、启动spark-shell

2、输入Scala命令

sc.textFile("file:///C:/Projects/WordCount/word.txt").flatMap(x => x.split("\t")).map(x=>(x,)).reduceByKey(_+_).collect()

五、Spark部署运行

cmd --> spark-submit(无需spark-shell)

spark-submit --executor-memory 1G --num-executors 8 --class main.MrDemo D:\Projects\IdeaProjects\MyTest\out\artifacts\MyTest_jar\MyTest.jar 2018072712

六、Python下Spark开发环境搭建(PySpark)

Bloghttps://www.cnblogs.com/guozw/p/10046156.html

1)安装Anaconda3-2019.03-Windows-x86_64(python 3.7.3)

2)下载spark-2.4.2-bin-hadoop2.7.tgz,解压,然后将spark目录下的pyspark文件夹(C:\ProgramData\spark-2.4.2-bin-hadoop2.7\python\pyspark)复制到python安装目录(C:\ProgramData\Anaconda3\Lib\site-packages)里

注意:Spark与Python版本要对应 - Python 2.7.5/3.5.2 + Spark 2.2.1 (pip install pyspark==2.2.1);Python 3.7.3 + spark-2.4.2-bin-hadoop2.7.tgz (pyspark 2.4.2)

3)安装py4j:Anaconda Prompt --> 安装py4j库

pip install py4j

4)新建一个PYTHONPATH的系统变量

PATHONPATH=%SPARK_HOME%\python;%SPARK_HOME%\python\lib\py4j-0.9-src.zip

5)PyCharm-->File-->Settings-->Project Interpreter-->Show All-->+-->System Interpreter-->选择:C:\ProgramData\Anaconda3\python.exe

6)PyCharm下编写WordCount测试

1、创建Session

from pyspark.sql import SparkSession
# appName中的内容不能有空格,否则报错
spark = SparkSession.builder.master("local[*]").appName("WordCount").getOrCreate()
#获取上下文
sc = spark.sparkContext

带有空格报错情况如下:

2、创建上下文

# 第一种方式
conf = SparkConf().setAppName('test').setMaster('local')
sc = SparkContext(conf=conf)
# 第二种方式
sc=SparkContext('local','test')

3、实例

# 实例1 - 读取文件并打印
from pyspark import SparkContext, SparkConf conf = SparkConf().setAppName('test').setMaster('local')
sc = SparkContext(conf=conf) rdd = sc.textFile('d:/scala/log.txt')
print(rdd.collect())

# 实例2 - WordCount
import sys
from operator import add
from pyspark import SparkContext if __name__ == "__main__":
sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile('./Word.txt')
counts = lines.flatMap(lambda x: x.split(' ')) \
.map(lambda x: (x, )) \
.reduceByKey(add)
output = counts.collect()
for (word, count) in output:
print("%s: %i" % (word, count))
sc.stop()

问题:

Java.util.NoSuchElementException: key not found: _PYSPARK_DRIVER_CALLBACK_HOST

原因:版本不兼容,PySpark的版本与Spark不匹配

解决:查看Spark版本,例如为2.1.0,则使用Pip安装PySpark时,带上版本号

pip install pyspark==2.1.2 # 皆为2.1版本

✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡Anaconda3.7与Anaconda3.5切换✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

win+R输入cmd进入命令行,跳转到Anaconda的安装目录,然后执行

cd C:\ProgramData\Anaconda3
cd C:\ProgramData\Anaconda3.5
python .\Lib\_nsis.py mkmenus

然后再点击Anaconda Prompt,即切换到当前Python环境

✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡✡

基于Hadoop伪分布式集群搭建Spark的更多相关文章

  1. hadoop伪分布式集群搭建与安装(ubuntu系统)

    1:Vmware虚拟软件里面安装好Ubuntu操作系统之后使用ifconfig命令查看一下ip; 2:使用Xsheel软件远程链接自己的虚拟机,方便操作.输入自己ubuntu操作系统的账号密码之后就链 ...

  2. Hadoop学习笔记(一):ubuntu虚拟机下的hadoop伪分布式集群搭建

    hadoop百度百科:https://baike.baidu.com/item/Hadoop/3526507?fr=aladdin hadoop官网:http://hadoop.apache.org/ ...

  3. Hadoop伪分布式集群搭建

    声明:作者原创,转载注明出处. 作者:帅气陈吃苹果 1.下载Hadoop压缩包 wget http://mirrors.hust.edu.cn/apache/hadoop/common/hadoop- ...

  4. hadoop伪分布式集群的搭建

    集群配置: jdk1.8.0_161 hadoop-2.6.1 linux系统环境:Centos6.5 创建普通用户  dummy 设置静态IP地址 Hadoop伪分布式集群搭建: 为普通用户添加su ...

  5. Hadoop伪分布式集群环境搭建

    本教程讲述在单机环境下搭建Hadoop伪分布式集群环境,帮助初学者方便学习Hadoop相关知识. 首先安装Hadoop之前需要准备安装环境. 安装Centos6.5(64位).(操作系统再次不做过多描 ...

  6. Hadoop单机/伪分布式集群搭建(新手向)

    此文已由作者朱笑笑授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 本文主要参照官网的安装步骤实现了Hadoop伪分布式集群的搭建,希望能够为初识Hadoop的小伙伴带来借鉴意 ...

  7. hadoop学习笔记(五)hadoop伪分布式集群的搭建

    本文原创,如需转载,请注明作者和原文链接 1.集群搭建的前期准备   见      搭建分布式hadoop环境的前期准备---需要检查的几个点 2.解压tar.gz包 [root@node01 ~]# ...

  8. Hadoop学习---CentOS中hadoop伪分布式集群安装

    注意:此次搭建是在ssh无密码配置.jdk环境已经配置好的情况下进行的 可以参考: Hadoop完全分布式安装教程 CentOS环境下搭建hadoop伪分布式集群 1.更改主机名 执行命令:vi  / ...

  9. zookeeper伪分布式集群搭建

    zookeeper集群搭建注意点:         配置数据文件myid1/2/3对应server.1/2/3         通过zkCli.sh -server [ip]:[port]检测集群是否 ...

随机推荐

  1. 记一次期待已久的渗透 从phpcms到thinkphp

    0X01 前言 这是刚刚开始学习渗透的一个目标吧 这个站从刚开始学的那一天起,就想把他日下来. 可能是自己的信息收集能力太差了吧,导致一直无从下手 没有进展.这是需要慢慢积累的过程.还需努力学习. 0 ...

  2. 微信公众号实现无限制推送模板消息!可向指定openID群发

    微信认证的服务号才有推送模板消息接口所以本文需要在认证服务号的情况下学习 以上就是模板消息,只有文字和跳转链接,没有封面图.在服务号的后台添加功能插件-模板消息即可. 模板消息,都是在后台选择一个群发 ...

  3. 了解dubbo+zookeeper

    一.Dubbo是什么? Dubbo是阿里巴巴公司开源的一个高性能优秀的服务框架,使得应用可通过高性能的 RPC 实现服务的输出和输入功能,分布式服务框架(SOA),致力于提供高性能和透明化的RPC远程 ...

  4. IP输出 之 ip_output、ip_finish_output、ip_finish_output2

    概述 ip_output-设置输出设备和协议,然后经过POST_ROUTING钩子点,最后调用ip_finish_output: ip_finish_output-对skb进行分片判断,需要分片,则分 ...

  5. docker操作笔记

    1.查看docker版本:docker info /docker  version2.使用 docker run 命令来在容器内运行一个应用程序.如输出helloworld:docker run ub ...

  6. excel怎么只打印某页?excel怎么只打印某几页

    有时候我们需要打印的excel文件,内容较多有好几页,而我们只需要打印里面的部分内容,为了减少纸张.碳粉的浪费,我们怎样精准打印某页或某几页呢?   工具/原料   Excel / WPS软件 方法/ ...

  7. koa 基础(六)应用级路由中间件

    1.应用级路由中间件 app.js /** * 应用级路由中间件 */ // 引入模块 const Koa = require('koa'); const router = require('koa- ...

  8. 日志框架之Logger

    概述 在我们日常的开发中,肯定是少不了要和 Log 打交道,回想一下我们是怎么使用 Log 的:先定义一个静态常量 TAG,TAG 的值通常是当前类的类名,然后在需要打印 Log 的地方,调用 Log ...

  9. vue-template-compiler作用

    vue-template-compiler的作用是什么: 看起来 template-compiler是给parse函数使用的, 那么parse函数是干什么的呢 先看一下parse的结果: 结论:使用v ...

  10. idea中git远程版本回退

    idea中git远程版本回退 2017年10月15日 15:25:36 gomeplus 阅读数:19313 工作中遇到git远程仓库需要回退到历史版本的问题,根据网上的搜索结果结合自己的实践,整理了 ...