Repeater

POJ - 3768

Harmony is indispensible in our daily life and no one can live without it----may be Facer is the only exception. One day it is rumored that repeat painting will create harmony and then hundreds of people started their endless drawing. Their paintings were based on a small template and a simple method of duplicating. Though Facer can easily imagine the style of the whole picture, but he cannot find the essential harmony. Now you need to help Facer by showing the picture on computer.

You will be given a template containing only one kind of character and spaces, and the template shows how the endless picture is created----use the characters as basic elements and put them in the right position to form a bigger template, and then repeat and repeat doing that. Here is an example.

	# #

 #      <-template

# #

So the Level 1 picture will be

	# #

 #

# #

Level 2 picture will be

# #   # #

 #     #

# #   # #

   # #   

    #    

   # #   

# #   # #

 #     # 

# #   # #

Input

The input contains multiple test cases.

The first line of each case is an integer N, representing the size of the template is NN (N* could only be 3, 4 or 5).

Next N lines describe the template.

The following line contains an integer Q, which is the Scale Level of the picture.

Input is ended with a case of N=0.

It is guaranteed that the size of one picture will not exceed 3000*3000.

Output

For each test case, just print the Level Q picture by using the given template.

Sample Input

3
# #
#
# #
1
3
# #
#
# #
3
4
OO
O O
O O
OO
2
0

Sample Output


# #
#
# #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# #
#
# #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
# # # #
# #
# # # #
# # # # # # # #
# # # #
# # # # # # # #
OO OO
O OO O
O OO O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O O O O
O O O O
OO OO
OO OO
O OO O
O OO O
OO OO

思路:

分形的经典问题,

将大图形转为很多个小图形处理,小图形也继续分为更小的图形处理。

用dfs递归操作即可,要维护好当前图形的左上角的坐标和当前步骤的图形尺寸(边长),以及当前是第几层,到第一层的时候直接赋值为单元元素。

个人觉得自己写法属于比较简单的。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 3000 + 10;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ bool s[maxn][maxn];
char a[maxn][maxn];
int x;
void dfs(int lx, int ly, int rx, int ry, int len, int st)
{
// cout << lx << " " << ly << " " << rx << " " << ry << " " << len << " " << st << endl;
if (len == 1)
{
s[lx][ly] = 1;
return ;
}
int to = len / x;
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
dfs(lx + (i - 1)*to, ly + (j)*to, lx + (i - 1)*to + to - 1, ly + (j)*to + to - 1, to, st - 1);
}
}
} }
char base;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
while (~scanf("%d", &x))
{
if (!x)
{
break;
}
// cin >> base;
getchar();
repd(i, 1, x)
{
gets(a[i]);
// getline(cin, a[i]);
}
repd(i, 1, x)
{
rep(j, 0, x)
{
if (a[i][j] != ' ')
{
base = a[i][j];
}
// cout<<a[i][j];
}
// cout<<endl;
}
// chu(base);
int step;
// cin >> step;
scanf("%d", &step);
int len = (int)(pow(x, step) + 0.5);
dfs(1, 1, len, len, len, step);
repd(i, 1, len)
{
repd(j, 1, len)
{
if (s[i][j])
{
putchar(base);
// cout << base;
} else
{
putchar(' ');
// cout << ' ';
}
s[i][j] = 0;
}
putchar('\n');
// cout << endl;
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Repeater POJ - 3768 (分形)的更多相关文章

  1. POJ 2083 Fractal 分形

    去年校赛团队赛就有一道分形让所有大一新生欲生欲死…… 当时就想学了 结果一直拖到…… 今天上午…… 马上要省选了 才会一点基础分形…… 还是自己不够努力啊…… 分形主要是要找到递归点…… 还有深度…… ...

  2. POJ 2083 Fractal 分形题目

    这两天自学了一线算法导论里分治策略的内容,秉着只有真正投入投入编程,才能更好的理解一种算法的思想的想法,兴致勃勃地找一些入门的题来学习. 搜了一下最后把目光锁定在了Poj fractal这一个题上.以 ...

  3. 迭代加深搜索 POJ 1129 Channel Allocation

    POJ 1129 Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14191   Acc ...

  4. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  5. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  6. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  7. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  8. 转载:poj题目分类(侵删)

    转载:from: POJ:http://blog.csdn.net/qq_28236309/article/details/47818407 按照ac的代码长度分类(主要参考最短代码和自己写的代码)  ...

  9. SurfaceView 绘制分形图

    之前一直做的是应用类,这次抽时间,参考网上资料实践了下SurfaceView.目标是在页面上画一个科赫曲线的分形图. 代码如下: package com.example.fredric.demo02; ...

随机推荐

  1. 【编程开发】加密算法(MD5,RSA,DES)的解析

    MD5的全称是Message-Digest Algorithm 5,在90年代初由MIT的计算机科学实验室和RSA Data Security Inc发明,经MD2.MD3和MD4发展而来. MD5将 ...

  2. vue项目富文本编辑器vue-quill-editor之自定义图片上传

    使用富文本编辑器的第一步肯定是先安装依赖 npm i vue-quill-editor 1.如果按照官网富文本编辑器中的图片上传是将图片转为base64格式的,如果需要上传图片到自己的服务器,需要修改 ...

  3. Cent7.2单用户模式

      1. 在进入系统时选择内核启动. 2. 按'e'进入编辑模式,找到带有内核的那一行. 3. 将ro(read only)改为rw init=/sysboot/bin/sh. 4. 按下ctrl+x ...

  4. poj1915(双向bfs)

    题目链接:https://vjudge.net/problem/POJ-1915 题意:求棋盘上起点到终点最少的步数. 思路:双向广搜模板题,但玄学的是我的代码G++会wa,C++过了,没找到原因QA ...

  5. ValueError: row index was 65536, not allowed by .xls format

    报错:ValueError: row index was 65536, not allowed by .xls format 读取.xls文件正常,在写.xls文件,pd.to_excel()时候会报 ...

  6. 洛谷P4779 【模板】单源最短路径

    P4779 [模板]单源最短路径(标准版) 题目链接 https://www.luogu.org/problemnew/show/P4779 题目描述 给定一个 N个点,M条有向边的带非负权图,请你计 ...

  7. Vufuria入门 1 图片识别和选择

    Vufutia中的图片识别功能,底层主要是识别特征点来实现的.特征点,即那些棱角分明的点.尖锐的而不是圆滑的.对比度大的而不是小的. *** 步骤: 进入vofuria官网,登录,点击develop. ...

  8. Photon Server初识(六) --- 客户端与服务端消息传递

    前一章客户端与服务端连接成功,现在需要前后端进行数据传递. 一.前端发送消息.在项目Scripts目录中新建脚本 TestSer.cs.并挂载到相机上 二.客户端发送数据给服务端.编辑客户端代码 Te ...

  9. fiddler笔记:与Web Session的交互

    Decode Selected Session 解决响应体显示乱码的问题. AutoScroll Session List 决定Fiddler是否会自动将新增的Session添加到web sessio ...

  10. Go语言之依赖管理

    Go语言之依赖管理 Go语言的依赖管理随着版本的更迭正逐渐完善起来. 依赖管理 为什么需要依赖管理 最早的时候,Go所依赖的所有的第三方库都放在GOPATH这个目录下面.这就导致了同一个库只能保存一个 ...