【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
这些术语,我经常搞混淆,现在把它们放在一起,以示区别。(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉)
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:
(1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
(2) 根据抽出的样本计算给定的统计量T。
(3) 重复上述N次(一般大于1000),得到N个统计量T。
(4) 计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
Jackknife: 和上面要介绍的Bootstrap功能类似,只是有一点细节不一样,即每次从样本中抽样时候只是去除几个样本(而不是抽样),就像小刀一样割去一部分。
(pku, sewm,shinningmonster.)
============================================================================================================================
下列方法都是上述Bootstraping思想的一种应用。
bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列h_1,⋯
⋯h_n ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。
Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。
gradient boosting(又叫Mart, Treenet):Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。
Rand forest: 随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m
<< M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。 按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。
Rand forest与bagging的区别:1). Rand forest是选与输入样本的数目相同多的次数(可能一个样本会被选取多次,同时也会造成一些样本不会被选取到),而bagging一般选取比输入样本的数目少的样本;2). bagging是用全部特征来得到分类器,而rand forest是需要从全部特征中选取其中的一部分来训练得到分类器; 一般Rand forest效果比bagging效果好!
pku, sewm,shinningmonster.
【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的更多相关文章
- Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...
- (转)关于bootstrap, boosting, bagging,Rand forest
转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...
- A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- Gradient Boosting算法简介
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingReg ...
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
- Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
随机推荐
- 【winfrom-多语言】实现多语言切换:使用资源文件
使用资源文件实现多语言切换. 1. 新建一个Form,名为FrmMain. 在界面添加一个MenuStrip和一个Button. 并设置好控件的文本和位置.(Language=(Default)) 2 ...
- 使用nodejs进行开发,concurrently模块,使我们同时执行多个命令。
concurrently模块使用. 安装模块 npm install concurrently 配置concurrently 运行多个服务 当我们使用nodejs和vue混合开发的时候.当要同时启动后 ...
- psd缩略图上传控件
前言:因自己负责的项目(jetty内嵌启动的SpringMvc)中需要实现文件上传,而自己对java文件上传这一块未接触过,且对 Http 协议较模糊,故这次采用渐进的方式来学习文件上传的原理与实践. ...
- cookbook 6.1 温标的转换
任务: 在开氏温度(Kelvin).摄氏度(Celsius).华氏温度(Fahrenheit).兰金温度(Rankine)之间做转换 解决方案: #coding=utf-8 class Tempera ...
- K 短路
这种东西到现在才学-- 考虑 \(T\) 为根的最短路树,一条路径一定是树上边和非树边交错. 我们只管非树边,对于一条路径,非树边构成一个序列 \(L\),相邻两条路径 \(\left(u_1,v_1 ...
- 也谈Tcp/Ip协议
一. 计算机网络体系结构分层 一图看完本文 计算机网络体系结构分层 计算机网络体系结构分层 不难看出,TCP/IP 与 OSI 在分层模块上稍有区别.OSI 参考模型注重“通信协议必要的功能是什么”, ...
- BZOJ 4388 [JOI2012春季合宿]Invitation (线段树、二叉堆、最小生成树)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4388 题解 模拟Prim算法? 原题所述的过程就是Prim算法求最大生成树的过程.于是我 ...
- Java线程之生命周期
简述 以下类图展示了线程生命周期中不同的状态.我们可以创建一个线程并启动它,但是线程状态从Runnable.Running.Blocked等状态的变化取决于系统线程调度器,java本身并不能完全控制. ...
- Xargs用法详解(自创)
简介之所以能用到这个命令,关键是由于很多命令不支持|管道来传递参数,而日常工作中有有这个必要,所以就有了xargs命令,例如: 这个命令是错误的find /sbin -perm +700 |ls -l ...
- CentOS 安装 Mongodb详解 --- 无Linux基础
先去官方下载离线安装包:https://www.mongodb.com/ ftp连接一下服务器,把离线包上传上去 XShell连接一下: 解压文件(你输一点就可以按tab键,它会自动补全):tar - ...