【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting
这些术语,我经常搞混淆,现在把它们放在一起,以示区别。(部分文字来自网络,由于是之前记的笔记,忘记来源了,特此向作者抱歉)
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:
(1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
(2) 根据抽出的样本计算给定的统计量T。
(3) 重复上述N次(一般大于1000),得到N个统计量T。
(4) 计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
Jackknife: 和上面要介绍的Bootstrap功能类似,只是有一点细节不一样,即每次从样本中抽样时候只是去除几个样本(而不是抽样),就像小刀一样割去一部分。
(pku, sewm,shinningmonster.)
============================================================================================================================
下列方法都是上述Bootstraping思想的一种应用。
bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列h_1,⋯
⋯h_n ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。
Boosting思想的一种改进型AdaBoost方法在邮件过滤、文本分类方面都有很好的性能。
gradient boosting(又叫Mart, Treenet):Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。损失函数(loss function)描述的是模型的不靠谱程度,损失函数越大,则说明模型越容易出错。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。
Rand forest: 随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。 在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M个feature中,选择m个(m
<< M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。 按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。可以这样比喻随机森林算法:每一棵决策树就是一个精通于某一个窄领域的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。
Rand forest与bagging的区别:1). Rand forest是选与输入样本的数目相同多的次数(可能一个样本会被选取多次,同时也会造成一些样本不会被选取到),而bagging一般选取比输入样本的数目少的样本;2). bagging是用全部特征来得到分类器,而rand forest是需要从全部特征中选取其中的一部分来训练得到分类器; 一般Rand forest效果比bagging效果好!
pku, sewm,shinningmonster.
【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的更多相关文章
- Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别
引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...
- (转)关于bootstrap, boosting, bagging,Rand forest
转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...
- A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...
- 集成学习之Boosting —— Gradient Boosting原理
集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...
- Gradient Boosting算法简介
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingReg ...
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
- Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
随机推荐
- vue 手机物理返回键关闭弹框
1.打开弹窗调用 window.history.pishState() 函数 2.关闭弹框 3.mounted 生命周期 监听popstate 事件 4.beforeDestroy 生命周期 移除po ...
- maven的概念-01
1.maven 简介 maven是Apach软件基金会维护的一款自动化构建工具: 作用是服务于java平台的项目构建和依赖管理: 2.关于项目构建 1)java代码 Java是一门编译型语言,.j ...
- 《剑指offer》算法题第十一天
今日题目: 滑动窗口的最大值 扑克牌中的顺子 圆圈中最后剩下的数字 求1+2+3+...+n 不用加减乘除做加法 构建乘积数组 今天的题目比较有意思,可以学到很多知识,包括第1题中的数据结构——双向队 ...
- luogu3812 【模板】线性基
Code: #include <cstdio> #include <algorithm> #define ll long long #define N 64 #define s ...
- android启动模拟器命令
参考资料:http://blog.csdn.net/sanjinxiong/article/details/6758222 启动模拟器 首先通过android list avd 查看建好的虚拟设备: ...
- 征途堆积出友情的永恒「堆优化dp」
直接写题解: 很简单的dp暴力转移式子:f[i]=MAX{f[j]+max(tax[j],sum[i]-sum[j])} 观察式子,只有一个变量sum[i]; 而其他都为定量; 则考虑维护 两个定量: ...
- JavaWeb-SpringSecurity使用短信验证码登陆
相关博文 JavaWeb-SpringBoot_一个类实现腾讯云SDK发送短信 传送门 系列博文 项目已上传至guthub 传送门 JavaWeb-SpringSecurity初认识 传送门 Java ...
- 「UVA12293」 Box Game
题目链接 戳我 \(Solution\) 这道题第一眼看样例,猜了个结论偶数\(Alice\)赢,否则\(Bob\)赢,打了一发,交了上去果不其然的\(wa\)了,第二次猜\(2\)的幂次方\(Ali ...
- 使用IDEA集成Spring框架时右下角警戒
反正看到报错就不爽,就要去解决它 这个警戒的意思大概就是: spring配置检查 找到未映射的Spring配置文件. 请配置Spring的Facet. 那这玩意怎么配置? 点击IDEA右上角的Proj ...
- 黑马lavarel教程---10、lavarel模型关联
黑马lavarel教程---10.lavarel模型关联 一.总结 一句话总结: 1.模型关联比较方便,一次定义,后面都可以使用 2.关联关系 使用动态属性进行调用 1.一对多,多对多实例? 一对多: ...