vulkan asynchronous compute
https://www.youtube.com/watch?v=XOGIDMJThto
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/9-Asynchonous-compute.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3d12/user-mode-heap-synchronization
https://gpuopen.com/concurrent-execution-asynchronous-queues/
通过queue的并行 增加GPU的并行
并发性 concurrency
Radeon™ Fury X GPU consists of 64 Compute Units (CUs), each of those containing 4 Single-Instruction-Multiple-Data units (SIMD) and each SIMD executes blocks of 64 threads, which we call a “wavefront”.
Since latency for memory access can cause significant stalls in shader execution, up to 10 wavefronts can be scheduled on each SIMD simultaneously to hide this latency.
GPU有64个CU
每个CU 4个SIMD
每个SIMD 64blocks ----- 一个wavefront
ps的计算在里面
GPU提升并发性 减小GPU idel
async compute
- Copy Queue(DirectX 12) / Transfer Queue (Vulkan): DMA transfers of data over the PCIe bus
- Compute queue (DirectX 12 and Vulkan): execute compute shaders or copy data, preferably within local memory
- Direct Queue (DirectX 12) / Graphics Queue (Vulkan): this queue can do anything, so it is similar to the main device in legacy APIs
这三种queue对应metal里面三种encoder 是为了增加上文所述并发性
对GPU底层的 操作这种可行性是通过这里的queue体现的
vulkan对queue的个数有限制 可以query
dx12没有这种个数限制
更多部分拿出来用cs做异步计算
看图--技能点还没点
problem shooting
- If resources are located in system memory accessing those from Graphics or Compute queues will have an impact on DMA queue performance and vice versa.
- Graphics and Compute queues accessing local memory (e.g. fetching texture data, writing to UAVs or performing rasterization-heavy tasks) can affect each other due to bandwidth limitations 带宽限制 数据onchip
- Threads sharing the same CU will share GPRs and LDS, so tasks that use all available resources may prevent asynchronous workloads to execute on the same CU
- Different queues share their caches. If multiple queues utilize the same caches this can result in more cache thrashing and reduce performance
Due to the reasons above it is recommended to determine bottlenecks for each pass and place passes with complementary bottlenecks next to each other:
- Compute shaders which make heavy use of LDS and ALU are usually good candidates for the asynchronous compute queue
- Depth only rendering passes are usually good candidates to have some compute tasks run next to it
- A common solution for efficient asynchronous compute usage can be to overlap the post processing of frame N with shadow map rendering of frame N+1
- Porting as much of the frame to compute will result in more flexibility when experimenting which tasks can be scheduled next to each other
- Splitting tasks into sub-tasks and interleaving them can reduce barriers and create opportunities for efficient async compute usage (e.g. instead of “for each light clear shadow map, render shadow, compute VSM” do “clear all shadow maps, render all shadow maps, compute VSM for all shadow maps”)
然后给异步计算的功能加上开关
看vulkan这个意思 它似乎没有metal2 那种persistent thread group 维持数据cs ps之间传递时还可以 on tile
vulkan asynchronous compute的更多相关文章
- Vulkan在Android使用Compute shader
oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...
- android下vulkan与opengles纹理互通
先放demo源码地址:https://github.com/xxxzhou/aoce 06_mediaplayer 效果图: 主要几个点: 用ffmpeg打开rtmp流. 使用vulkan Compu ...
- 剖析虚幻渲染体系(13)- RHI补充篇:现代图形API之奥义与指南
目录 13.1 本篇概述 13.1.1 本篇内容 13.1.2 概念总览 13.1.3 现代图形API特点 13.2 设备上下文 13.2.1 启动流程 13.2.2 Device 13.2.3 Sw ...
- GPUImage移植总结
项目github地址: aoce 我是去年年底才知道有GPUImage这个项目,以前也一直没有在移动平台开发过,但是我在win平台有编写一个类似的项目oeip(不要关注了,所有功能都移植或快移植到ao ...
- Compute Resource Consolidation Pattern 计算资源整合模式
Consolidate multiple tasks or operations into a single computational unit. This pattern can increase ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- Vulkan Tutorial 13 Render passes
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的f ...
- Vulkan Tutorial 16 Command buffers
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 诸如绘制和内存操作相关命令,在Vulkan中不是通过函数直接调用的.我们需要在命令缓 ...
- Vulkan Tutorial 29 Loading models
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 应用程序现在已经可以渲染纹理3D模型,但是 vertice ...
随机推荐
- idea配置git的步骤
第一次git到GitHub过程 打开到项目 这样就不用再用git Bash敲命令了
- 利用elasticsearch-dump实现es索引数据迁移附脚本
1.安装环境 CentOS Linux release 7.5.1804 (Core) 1 2.安装nodejs yum install -y nodejs 1 3.验证nodejs [root@lo ...
- Java总复习内容
StringBuffer定义时需要用正确的方式 例如: StringBuffer xxx = new StringBuffer("雯雯是猪"); 使用StringBuffer的连接 ...
- Linux安装zookeeper集群
一.单机部署: ①下载.解压 http://archive.apache.org/dist/zookeeper/ tar -zxf zookeeper-3.4.10.tar.gz -C /usr/lo ...
- Oracle的查询-多行查询
多行函数[聚合函数],作用于多行,返回一个值 ) from emp;--查询总数量 select count(empno) from emp;--查询总数量 select count(*) from ...
- LUA的table实现
数据结构 下面的结构体是lua中所定义的table typedef struct Table { CommonHeader; lu_byte flags; /* 1<<p means ta ...
- Photon Server 实现注册与登录(四) --- 服务端响应登陆和注册
前面已经整理过了服务端代码,MyGameServer.cs 和 ClientPeer.cs 对请求和响应进行了拆分.接下来处理对前端的响应 一.响应登陆请求 之前整理中,响应前端请求主要在类Clien ...
- 怎样禁用浏览器的Cookie功能
使用: window.navigator.cookieEnabled; window.navigator.cookieEnabled = true; 这样设置以后, 浏览器就不会接受和保存服务器传过来 ...
- [Tarjan系列] 无向图e-DCC和v-DCC的缩点
上一篇讲了如何应用Tarjan算法求出e-DCC和v-DCC. 那么这一篇就是e-DCC和v-DCC的应用之一:缩点. 先讲e-DCC的缩点. 我们把每一个e-DCC都看成一个节点,把所有桥边(x,y ...
- java7:核心技术与最佳实践读书笔记——对象生命周期
流程:字节码文件(.class) -> 类加载 -> 类链接 -> 类初始化 -> 对象初始化 -> 对象创建 -> 对象使用 -> 对象回收 . 1.Jav ...