vulkan asynchronous compute
https://www.youtube.com/watch?v=XOGIDMJThto
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/9-Asynchonous-compute.pdf
https://docs.microsoft.com/en-us/windows/win32/direct3d12/user-mode-heap-synchronization
https://gpuopen.com/concurrent-execution-asynchronous-queues/
通过queue的并行 增加GPU的并行
并发性 concurrency
Radeon™ Fury X GPU consists of 64 Compute Units (CUs), each of those containing 4 Single-Instruction-Multiple-Data units (SIMD) and each SIMD executes blocks of 64 threads, which we call a “wavefront”.
Since latency for memory access can cause significant stalls in shader execution, up to 10 wavefronts can be scheduled on each SIMD simultaneously to hide this latency.
GPU有64个CU
每个CU 4个SIMD
每个SIMD 64blocks ----- 一个wavefront
ps的计算在里面
GPU提升并发性 减小GPU idel
async compute
- Copy Queue(DirectX 12) / Transfer Queue (Vulkan): DMA transfers of data over the PCIe bus
- Compute queue (DirectX 12 and Vulkan): execute compute shaders or copy data, preferably within local memory
- Direct Queue (DirectX 12) / Graphics Queue (Vulkan): this queue can do anything, so it is similar to the main device in legacy APIs
这三种queue对应metal里面三种encoder 是为了增加上文所述并发性
对GPU底层的 操作这种可行性是通过这里的queue体现的
vulkan对queue的个数有限制 可以query
dx12没有这种个数限制
更多部分拿出来用cs做异步计算
看图--技能点还没点
problem shooting
- If resources are located in system memory accessing those from Graphics or Compute queues will have an impact on DMA queue performance and vice versa.
- Graphics and Compute queues accessing local memory (e.g. fetching texture data, writing to UAVs or performing rasterization-heavy tasks) can affect each other due to bandwidth limitations 带宽限制 数据onchip
- Threads sharing the same CU will share GPRs and LDS, so tasks that use all available resources may prevent asynchronous workloads to execute on the same CU
- Different queues share their caches. If multiple queues utilize the same caches this can result in more cache thrashing and reduce performance
Due to the reasons above it is recommended to determine bottlenecks for each pass and place passes with complementary bottlenecks next to each other:
- Compute shaders which make heavy use of LDS and ALU are usually good candidates for the asynchronous compute queue
- Depth only rendering passes are usually good candidates to have some compute tasks run next to it
- A common solution for efficient asynchronous compute usage can be to overlap the post processing of frame N with shadow map rendering of frame N+1
- Porting as much of the frame to compute will result in more flexibility when experimenting which tasks can be scheduled next to each other
- Splitting tasks into sub-tasks and interleaving them can reduce barriers and create opportunities for efficient async compute usage (e.g. instead of “for each light clear shadow map, render shadow, compute VSM” do “clear all shadow maps, render all shadow maps, compute VSM for all shadow maps”)
然后给异步计算的功能加上开关
看vulkan这个意思 它似乎没有metal2 那种persistent thread group 维持数据cs ps之间传递时还可以 on tile
vulkan asynchronous compute的更多相关文章
- Vulkan在Android使用Compute shader
oeip 相关功能只能运行在window平台,想移植到android平台,暂时选择vulkan做为图像处理,主要一是里面有单独的计算管线且支持好,二是熟悉下最新的渲染技术思路. 这个 demo(git ...
- android下vulkan与opengles纹理互通
先放demo源码地址:https://github.com/xxxzhou/aoce 06_mediaplayer 效果图: 主要几个点: 用ffmpeg打开rtmp流. 使用vulkan Compu ...
- 剖析虚幻渲染体系(13)- RHI补充篇:现代图形API之奥义与指南
目录 13.1 本篇概述 13.1.1 本篇内容 13.1.2 概念总览 13.1.3 现代图形API特点 13.2 设备上下文 13.2.1 启动流程 13.2.2 Device 13.2.3 Sw ...
- GPUImage移植总结
项目github地址: aoce 我是去年年底才知道有GPUImage这个项目,以前也一直没有在移动平台开发过,但是我在win平台有编写一个类似的项目oeip(不要关注了,所有功能都移植或快移植到ao ...
- Compute Resource Consolidation Pattern 计算资源整合模式
Consolidate multiple tasks or operations into a single computational unit. This pattern can increase ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- Vulkan Tutorial 13 Render passes
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Setup 在我们完成管线的创建工作,我们接下来需要告诉Vulkan渲染时候使用的f ...
- Vulkan Tutorial 16 Command buffers
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 诸如绘制和内存操作相关命令,在Vulkan中不是通过函数直接调用的.我们需要在命令缓 ...
- Vulkan Tutorial 29 Loading models
操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 应用程序现在已经可以渲染纹理3D模型,但是 vertice ...
随机推荐
- css设置滚动条并显示或隐藏
看效果,没有滚动条,超出div,开发中肯定不行. 有滚动条 最后就是想隐藏滚动条 代码 有滚动条并显示 <!DOCTYPE html> <html lang="en&quo ...
- MongoDB之源生基础概念与语句测试
此文章,我们拿MySQL和MongoDB做一个简单的理解. MySQL的数据库 => MongoDB数据库 MySQL的表 => MongoDB的Collection MySQL的一行记录 ...
- MapReduce 框架原理
1. Hadoop 序列化 1.1 自定义Bean对象实现序列化接口 必须实现 Writable 接口: 反序列化时,需要反射调用空参构造函数,所以必须有空参构造: 重写序列化方法: 重写反序列化方法 ...
- redis快速开始
1 下载地址:http://redis.io/download 2 安装步骤: 3 # 安装gcc 4 yum install gcc 5 6 # 把下载好的redis‐5.0.3.tar.gz放在/ ...
- vc++6.0中查看函数栈的结构
栈:一种后进先出的数据结构 比如:弹夹 函数调用的约定 传参顺序 传参媒介 如何传递返回值 平衡参数(堆栈平衡):有且只有被调方(callee)和调用方(caller)一方执行 _cdell (c ...
- 【背包问题】PACKING
题目描述 It was bound to happen. Modernisation has reached the North Pole. Faced with escalating costs ...
- Fiddler 抓包工具详解
Fiddler是一个蛮好用的抓包工具,可以将网络传输发送与接受的数据包进行截获.重发.编辑.转存等操作.也可以用来检测网络安全.反正好处多多,举之不尽呀!当年学习的时候也蛮费劲,一些蛮实用隐藏的小功能 ...
- uva 10325基础容斥
题目:给你一个数n以及m个数字,问1~n中不能被这m个数字整除的数字的个数. 分析:容斥原理.组合数学.数字1-n中能被a.b整除的数字的个数分别是n/a,n/b: 则1-n中能被a或b整数的数字个数 ...
- Unity Button延迟功能
有时候Button点下去不是要求立即反应的,而是先有个特别短的动画,再反应. 实现: 继承Button,然后重写一下OnPointerClick,利用协程来延迟. using System.Colle ...
- 基于【 Docker】一 || ElK安装部署使用教程
一.ELK介绍 1.ELK组成 ELK由Elasticsearch.Logstash和Kibana三部分组件组成: Elasticsearch是个开源分布式搜索引擎,它的特点有:分布式,零配置,自动发 ...