[USACO19FEB]Cow Dating——找规律
题解
显然原题等价于让我们求这个式子\(\prod\limits_{i=l}^{r}(1-p_i)\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)的最大值是多少
打打表,或者直观上感受一下,这东西是个凸壳,进一步观察,你会发现随着左端点的右移,最优决策点也在右移,于是拿个\(two\ pointer\)搞一搞就好了
凸性的证明在代码下面QWQ
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 1000000
int n, p[N + 5];
long double prod[N + 5], sum[N + 5], ans;
int main() {
scanf("%d", &n);
prod[0] = 1;
for (int i = 1; i <= n; ++i)
scanf("%d", &p[i]), prod[i] = p[i] / 1e6, sum[i] = sum[i - 1] + prod[i] / (1 - prod[i]), prod[i] = prod[i - 1] * (1 - prod[i]);
int j = 1;
for (int i = 1; i <= n; ++i) {
while (j + 1 <= n && prod[j + 1] * (sum[j + 1] - sum[i - 1]) >= prod[j] * (sum[j] - sum[i - 1])) j++;
ans = max(ans, prod[j] / prod[i - 1] * (sum[j] - sum[i - 1]));
}
printf("%lld\n", (long long)(ans * 1e6));
return 0;
}
证明:
①式子的值递增时,有如下不等式成立
\]
简单的化一下,会得到一个形式非常优美的东西
\]
②式子的值递减时,同理①,可得到\(\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\geqslant 1\)
然后又因为\(\sum\limits_{i=l}^{r}\frac{p_i}{1-p_i}\)在固定左端点并把右端点向右移动时是严格单增的,所以是凸的
有了上面的结论,也可以证明最优决策点的单调移动了
[USACO19FEB]Cow Dating——找规律的更多相关文章
- The Cow Lineup_找规律
Description Farmer John's N cows (1 <= N <= 100,000) are lined up in a row.Each cow is labeled ...
- P5242 [USACO19FEB]Cow Dating
题目链接 题意分析 首先我们可以得出计算公式 \[s_i=\prod_{k=1}^i(1-p_k)\] \[f_i=\sum_{k=1}^i\frac{p_k}{1-p_k}\] 那么 \[ans(i ...
- [USACO19FEB]Cow Dating
Luogu5242 通过观察数据,我们可以发现,右端点的取值是单调递增的.于是,我们可以极限一波,用一个双指针法,类似于队列. 右端点的取值满足以下公式: (1-p1)(1-p2)..(1-pn) * ...
- 洛谷 P5242 [USACO19FEB]Cow Dating P
这道题很有意思. 不难发现,对于一个区间 \([l, r]\),恰好只有一个奶牛接受邀请的概率为 \[\prod_{i=l}^r(1-p_i) \cdot \sum_{i=l}^r \frac {p_ ...
- hdu 3951 - Coin Game(找规律)
这道题是有规律的博弈题目,,, 所以我们只需要找出规律来就ok了 牛人用sg函数暴力找规律,菜鸟手工模拟以求规律...[牢骚] if(m>=2) { if(n<=m) {first第一口就 ...
- HDU 5703 Desert 水题 找规律
已知有n个单位的水,问有几种方式把这些水喝完,每天至少喝1个单位的水,而且每天喝的水的单位为整数.看上去挺复杂要跑循环,但其实上,列举几种情况之后就会发现是找规律的题了= =都是2的n-1次方,而且这 ...
- hdu4952 Number Transformation (找规律)
2014多校 第八题 1008 2014 Multi-University Training Contest 8 4952 Number Transformation Number Transform ...
- CF456B Fedya and Maths 找规律
http://codeforces.com/contest/456/problem/B CF#260 div2 B Fedya and Maths Codeforces Round #260 B. F ...
- hdu 4731 2013成都赛区网络赛 找规律
题意:找字串中最长回文串的最小值的串 m=2的时候暴力打表找规律,打表可以用二进制枚举
随机推荐
- 最新 4399java校招面经 (含整理过的面试题大全)
从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.4399等10家互联网公司的校招Offer,因为某些自身原因最终选择了4399.6.7月主要是做系统复习.项目复盘.Leet ...
- 洛谷 题解 CF903B 【The Modcrab】
如果它在接下来一回合能一下就将你KO了,那么,你就十分需要回血(一直回到它一下敲不死你),否则你就一直打它就好了. #include<iostream> using namespace s ...
- kafka 名词解释(四)
为什么要了解这些名词的解释呢?因为在学一个新的知识或者领域的时候,我们需要知道它所定义的概念和名词意思,因为只有这样我们才能理解和掌握这个新的知识点,才能更加系统的掌握这个技术. 一.名词解释 1.b ...
- 异构平台mysql-oracle(ogg)安装部署
如图所示:源端采用Mysql库,目标端采用Oracle库 一.OGG安装配置(源端) 1.OGG下载 https://edelivery.oracle.com/EPD/Download/get_f ...
- 【浅析C++11】std::function和std::bind
目录 std::function可调用对象包装器 std::function基本用法 std::function/std::bind与抽象工厂.工厂方法的一点思考 std::function可调用对象 ...
- Go语言学习之main包的讲解
### Go语言学习之main包的讲解 1.Go中main函数不支持任何返回值 2.可以通过os.Exit(0)来返回状态 func main(){ fmt.Println("hellow ...
- 6.Linux查看哪个进程占用磁盘IO
$ iotop -oP命令的含义:只显示有I/O行为的进程
- S02_CH01_Hello World实验
S02_CH01_Hello World实验 ZYNQ是一款SOC芯片,在前面第一季的学习当中,我们只是粗略的学习了ZYNQ的PL部分,对于ZYNQ最突出的功能,其内部的双核Cortex-A9内核并未 ...
- Date及DateFormat用法
Date 与DateFormat之间的转化String <————>Date Date与Calendar 之间的转化Long<————>Date 日历小程序 Scanner i ...
- 教你如何进行移动端APP测试
1.安全测试(权限) 1)软件权限:其中包括发送信息,拨打电话,链接网络,访问手机信息,联系人信息等等 2)数据在本地的存储.传输等 3)执行某些操作时导致的输入有效性验证.授权.数据加密等方面 4) ...