Description

定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与
G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中.
现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异
或为一个连通图?

Input

第一行为一个整数s, 表图的个数.
接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原图通过以下伪代码转化得
到的. 图的结点从 1 开始编号, 下面设结点数为 n.
Algorithm 1 Print a graph G = (V, E)
for i = 1 to n do
for j = i + 1 to n do
if G contains edge (i, j) then
print 1
else
print 0
end if
end for
end for
 2 ≤ n ≤ 10,1 ≤ s ≤ 60.

Output

输出一行一个整数, 表示方案数

Sample Input

3
1
1
0

Sample Output

4

HINT

Solution

这道题的出处是去年我们省的省队集训。

回想起去年省队集训的时候,非正式选手的我看到这道题和这道题题解时的一脸懵逼。

“为什么是2^全零行个数次方啊?”

“斯特林数是啥子啊?”

“贝尔数又是啥子啊?”

“这题为什么我看了题解还是不知道怎么做啊?”

“为什么标程的代码这么短啊?”

“……”

时隔了整整一年,重新拿到这道题,感慨颇多。

首先,连通的条件并不好算,我们考虑不连通的情况。

我们先枚举一个划分,表示不同的划分里的点一定在不同的连通块,但在同一个划分里的点不一定在同一个连通块。也就是说所有连接两个不同划分的边都必须为0。这个的方案数可以用高斯消元算,答案会等于2^s-基的个数。

然后我们再考虑每种方案都被重复算了多少遍。一个划分集合如果是另一个划分集合的子集的话那么它被重复算的系数是斯特林数,我们可以暴力把这个容斥系数算出来(如果打表打出来会发现其实是阶乘)。

复杂度是贝尔数的第N项*高斯消元的。

代码的确很短。

Code

 #include <cstdio>
#include <bitset>
#include <cstring>
#define R register
typedef long long ll;
char str[];
int s, n, id[][], len;
std::bitset<> b[], t, c[];
int col[];
ll pw[], ans, f[], S[][];
void dfs(R int x, R int cl)
{
if (x > n)
{
R int cnt = , ji = ;
for (R int i = ; i <= n; ++i)
for (R int j = i + ; j <= n; ++j)
if (col[i] != col[j]) t.set(cnt), ++cnt;
else t.reset(cnt), ++cnt;
for (R int i = ; i <= s; ++i)
{
c[i] = b[i] & t;
// for (R int j = 0; j < len; ++j) printf("%d", c[i][j] == 1); puts("");
}
for (R int i = , bs = ; i <= s && bs < len; )
{
if (c[i][bs] == )
{
for (R int j = i + ; j <= s; ++j)
if (c[j][bs])
{
std::swap(c[i], c[j]);
break;
}
}
if (c[i][bs] == ) {++bs; continue;}
++ji;
for (R int j = i + ; j <= s; ++j)
if (c[j][bs])
c[j] ^= c[i];
++i; ++bs;
}
// for (R int i = 1; i <= n; ++i) printf("%d ", col[i]); puts("");
// printf("base %d pw %lld\n", ji, f[cl] * pw[s - ji]);
ans += f[cl] * pw[s - ji];
return ;
}
for (R int i = ; i <= cl; ++i)
{
col[x] = i;
dfs(x + , cl);
}
col[x] = cl + ;
dfs(x + , cl + );
}
int main()
{
scanf("%d", &s);
pw[] = ;
for (R int i = ; i <= s; ++i)
{
scanf("%s", str); pw[i] = pw[i - ] * ;
len = strlen(str);
for (n = ; n <= ; ++n) if (n * (n - ) == len * ) break;
for (R int j = ; j < len; ++j) b[i][j] = (str[j] == '');
}
// for (R int i = 1; i <= s; ++i) {for (R int j = 0; j < len; ++j) printf("%d", b[i][j] == 1); puts("");}
S[][] = ;
for (R int i = ; i <= n; ++i)
{
S[i][] = ;
for (R int j = ; j <= i; ++j)
S[i][j] = S[i - ][j - ] + j * S[i - ][j];
}
f[] = ;
for (R int i = ; i <= n; ++i)
{
for (R int j = i - ; j; --j)
f[i] -= S[i][j] * f[j];
// printf("%lld\n", f[i]);
}
R int cnt = ;
for (R int i = ; i <= n; ++i)
for (R int j = i + ; j <= n; ++j)
id[i][j] = id[j][i] = cnt++;
dfs(, );
printf("%lld\n", ans);
return ;
}
/*
3
111
111
111
*/

【BZOJ4671】 异或图的更多相关文章

  1. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  2. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

  3. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  4. BZOJ4671异或图

    题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 ...

  5. BZOJ4671 异或图(容斥+线性基)

    题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1 ...

  6. BZOJ4671 异或图 斯特林反演+线性基

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般 ...

  7. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  8. 【XSY2701】异或图 线性基 容斥原理

    题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...

  9. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  10. 【bzoj4671】异或图(容斥+斯特林反演+线性基)

    传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: ...

随机推荐

  1. MySQL 数据库的备份和恢复

    1.DOS命令 mysqldump /*DOS命令生成文本文件*/ mysqldump -u username -h host -ppassword dbname [tbanme1,tbname2,. ...

  2. CA机构及SSL证书

    互联网安全形势日趋严峻,企业重视自身互联网安全已成必然,SSL认证成大势所趋.要部署SSL证书最首先就是选好CA机构!其次选择适合自己的SSL证书!今天就来介绍一下如何选择CA机构及SSL证书! 首先 ...

  3. charles 抓包 (一)

    在web.app开发中经常需要通过抓包来定位页面.接口返回数据的问题.在mac系统中,charles是一款功能丰富的抓包软件.可以实现app的数据抓包. 工具:charles 附送charles的破解 ...

  4. java——HashSet中add()方法不能加重复值得原因理解(我们一起来看底层代码吧)

    Set<String> names = new HashSet<>(); names.add("张三"); names.add(new String(&qu ...

  5. Aveva Marine 新建项目001

    1# 项目代号定义,三个字符,例如Abc 2# 新建文件夹,命名为“Abc” 3# 新建文件名为evars.bat文件,放到项目文件夹的根目录 内容为: SET Abc000=项目文件夹路径\Abc0 ...

  6. Java 实现 海康摄像头抓拍图像 Windows、Linux

    先抱怨一下,打死都想不到,海康的摄像头SDK居然是一个Java类,还有必须的两个jar包(jna.jar,examples.jar).鬼能想得到会这么命名. 下面开始吧. Windows 把从官网下载 ...

  7. 高德地图API-设置考勤范围

    <template> <div class="page-setting-setgps"> <!--head--> <div class=& ...

  8. 使用Django开发简单接口:文章增删改查

    目录 1.一些准备工作 安装django 创建django项目 创建博客应用(app) 2.models.py 3.django admin 登录 创建超级用户 4.修改urls.py 5.新增文章接 ...

  9. Win10系统如何利用蓝牙设置动态锁?

    很多小伙伴都会有这样的经历,出门之后没走多远,却已然忘记是否锁门,有强迫症的人就会重新返回查看,以确保门是否反锁. 我们在使用电脑时也是这样,遇到事情要临时离开,却忘记是否锁屏,再返回来就耽误时间了. ...

  10. Linux下安装opencv with-ffmpeg解决无法读取视频的问题

    1. 编译安装ffmpeg 下载源码,执行 ./configure --disable-yasm --enbale-shared --prefix=/usr/local/ffmpeg 即可. 2. 下 ...