题目链接:戳我

【问题描述】

小A在玩打地鼠游戏。有一个n×m的网格,每个位置上地鼠都会要么冒出头要么缩进去。地鼠很狡猾,每次小A选一个地鼠冒出头的格子(x,y)把它打下去,但同一行同一列的地鼠全都会冒出头来。

小A发现这个游戏好像怎么都玩不完。这个时候小B过来向他展示真正的技术了。小B当然也知道这游戏是玩不完的,于是他准备了两个状态,并准备向小A表演把状态1进行若干次打地鼠操作变成状态2。

现在小B想知道他会不会翻车。

【输入格式】

第一行两个整数n,m表示棋盘大小n行m列。

接下来n行,每行一个长为m的字符串描述初始状态,'O'表示地鼠冒出头来,'X'表示地鼠缩了进去。

接下来n行,每行一个长为m的字符串描述结束状态,格式同上。

【输出格式】

如果能从初始状态变成目标状态输出1,否则输出0。

【样例输入】

4 4

XOOO

XXXX

XOOX

XOXO

OXOO

XOOO

XOOO

OOOO

【样例输出】

1

【数据规模】

subtask1(20'):n,m≤4。

subtask2(30'):n,m≤50。

subtask3(50'):n,m≤1000。


用黑色表示缩下去,白色表示冒出头。

每次操作相当于选一个白的变成黑的,但这行这列都会变成白的。

考虑倒着做。用灰色表示可能是黑也可能是白。

那么操作就变成了:选一个黑色或灰色的,必须满足这行这列除了它没有黑色,把它变成白色并把这行这列变成灰色。

注意到要操作一个黑色时,这行这列除了它就没有黑色了,所以操作之间不会干扰,直接能做就做就行了。

最后判下灰色的行列的交界处必须至少有一个白色(要进行第一步操作)。其它位置必须对应相等。

还要特判下如果一开始两个状态就相等输出1。

复杂度O(nm)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#define mp make_pair
#define MAXN 1010
using namespace std;
int n,m;
int a[MAXN][MAXN],b[MAXN][MAXN],cnt_hang[MAXN],cnt_lie[MAXN];
int done[MAXN][MAXN],done_hang[MAXN],done_lie[MAXN];
char s[MAXN][MAXN],t[MAXN][MAXN];
queue<pair<int,int> >q;
//倒着做 相当于把0变成1 QAQ
inline bool check_the_same()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]!=b[i][j]) return false;
return true;
}
inline bool check_s()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a[i][j]!=0) return false;
return true;
}
inline bool check_t()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]!=1) return false;
return true;
}
inline void paint(int x,int y)
{
if(!done_hang[x])
{
done_hang[x]=1;
for(int j=1;j<=m;j++)
{
if(j==y) continue;
b[x][j]=-1;
if(!cnt_lie[j]) q.push(mp(x,j));
}
}
if(!done_lie[y])
{
done_lie[y]=1;
for(int i=1;i<=n;i++)
{
if(i==x) continue;
b[i][y]=-1;
if(!cnt_hang[i]) q.push(mp(i,y));
}
}
}
inline bool solve()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]==0&&cnt_hang[i]==1&&cnt_lie[j]==1)
{
q.push(mp(i,j));
b[i][j]=-1;
done[i][j]=1;
}
while(!q.empty())
{
int u_x=q.front().first;
int u_y=q.front().second;
q.pop();
paint(u_x,u_y);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(b[i][j]!=-1&&a[i][j]!=b[i][j])
return false;
return true;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(s[i][j]=='O') a[i][j]=1;
else a[i][j]=0;
}
for(int i=1;i<=n;i++) scanf("%s",t[i]+1);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(t[i][j]=='O') b[i][j]=1;
else b[i][j]=0,cnt_hang[i]++,cnt_lie[j]++;
}
if(check_the_same()) printf("1\n");
else if(check_s()||check_t()) printf("0\n");
else if(solve()) printf("1\n");
else printf("0\n");
return 0;
}

noi.ac #536 打地鼠的更多相关文章

  1. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  4. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  5. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  8. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  9. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

随机推荐

  1. Orchestrator

    MYSQL5.7下搭建Orchestrator 环境说明 在主机1,主机2,主机3上安装MySQL服务端和客户端. 主机1 主机2 主机3 操作系统 CentOS7.4 CentOS7.4 CentO ...

  2. hype-v上centos7部署高可用kubernetes集群实践

    概述 在上一篇中已经实践了 非高可用的bubernetes集群的实践 普通的k8s集群当work node 故障时是高可用的,但是master node故障时将会发生灾难,因为k8s api serv ...

  3. WEBAPI 最近更新项目时 服务器总是提示:An error has occurred.

    解决办法: 在webconfig中设置 <system.web><customErrors mode="Off"/></system.web> ...

  4. eclipse 导入外面的jar

    Eclipse中导入外部jar包 听语音 | 浏览:52620 | 更新:2014-12-07 20:59 | 标签:eclipse 1 2 3 4 5 6 7 分步阅读 在编写java代码时,为方便 ...

  5. 4.Linux用户与权限管理

    Linux 系统是一个多用于多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统 新增用户: useradd  新用户名 设置密码:pa ...

  6. shell与其他语言不同点

    1.定义变量时,变量名不加美元符号($,PHP语言中变量需要),如: your_name="w3cschool.cn" 注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语 ...

  7. centos php7 amqp

    yum install -y librabbitmq-devel /home/git/php/bin/pecl install amqp echo "extension=amqp.so&qu ...

  8. C++第五次作业--运算符重载和函数重载

    C++ 运算符重载和函数重载 C++ 允许在同一作用域中的某个函数和运算符指定多个定义,分别称为函数重载和运算符重载. 重载声明是指一个与之前已经在该作用域内声明过的函数或方法具有相同名称的声明,但是 ...

  9. 【转载】softmax的log似然代价函数(求导过程)

    全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...

  10. hdf5文件、tqdm模块、nunique、read_csv、sort_values、astype、fillna

    pandas.DataFrame.to_hdf(self, path_or_buf, key, **kwargs): Hierarchical Data Format (HDF) ,to add an ...