AtCoder AGC004E Salvage Robots (DP)
题目链接
https://atcoder.jp/contests/agc004/tasks/agc004_e
题解
本题的难度不在于想到大体思路,而在于如何把代码写对。。
首先我们可以不让机器人动,让出口和边界一起动。
然后设\(dp[l][r][u][d]\)表示出口往四个方向分别动了最多\(l,r,u,d\)格,最大能圈住几个机器人。
转移以向下为例: 向下转移合法的条件为\(x_0+d<n-u\) (\(x_0,y_0\)为起点坐标),因为出口的位置是\(x_0+d+1\), 而同时要满足点在网格上下边界圈成的合法矩形内,网格下边界的最上位置为\(n-u\).
注意向下合法和向上合法并不等价,比如一种情况是起点离上边界很近离下边界很远,就有可能出现先上后下能完成但是先下后上完不成的情况。
防止MLE可以滚动数组或者开short
.
时间复杂度\(O(n^4)\).
代码
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cassert>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100;
short dp[N+3][N+3][N+3][N+3];
int s[N+3][N+3];
char a[N+3][N+3];
int n,m,sx,sy;
int getsum(int lx,int rx,int ly,int ry) {return s[rx][ry]-s[lx-1][ry]-s[rx][ly-1]+s[lx-1][ly-1];}
int updmax(short &x,short y) {x = x>y?x:y;}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) scanf("%s",a[i]+1);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
s[i][j] = (a[i][j]=='o'?1:0)+s[i-1][j]+s[i][j-1]-s[i-1][j-1];
if(a[i][j]=='E') {sx = i,sy = j;}
}
}
memset(dp,213,sizeof(dp));
dp[0][0][0][0] = 0; short ans = 0;
for(int l=0; sy-l>0; l++)
{
for(int r=0; sy+r<=m; r++)
{
for(int u=0; sx-u>0; u++)
{
for(int d=0; sx+d<=n; d++)
{
updmax(ans,dp[l][r][u][d]);
int ly = max(1+r,sy-l),ry = min(m-l,sy+r),lx = max(1+d,sx-u),rx = min(n-u,sx+d);
// printf("l%d r%d u%d d%d x[%d,%d] y[%d,%d]\n",l,r,u,d,lx,rx,ly,ry);
if(sx+d<n-u)
{
updmax(dp[l][r][u][d+1],dp[l][r][u][d]+getsum(sx+d+1,sx+d+1,ly,ry));
}
if(sx-u>1+d)
{
updmax(dp[l][r][u+1][d],dp[l][r][u][d]+getsum(sx-u-1,sx-u-1,ly,ry));
}
if(sy+r<m-l)
{
updmax(dp[l][r+1][u][d],dp[l][r][u][d]+getsum(lx,rx,sy+r+1,sy+r+1));
}
if(sy-l>1+r)
{
updmax(dp[l+1][r][u][d],dp[l][r][u][d]+getsum(lx,rx,sy-l-1,sy-l-1));
}
}
}
}
}
printf("%d\n",(int)ans);
return 0;
}
AtCoder AGC004E Salvage Robots (DP)的更多相关文章
- [agc004e]Salvage Robots dp
Description 蛤蟆国的领土我们可以抽象为H*W的笼子,在这片蛤土上,有若干个机器人和一个出口,其余都是空地,每次蛤蟆会要求让所有的机器人向某个方向移动一步,当机器人移动到出口时会被蛤蟆活摘出 ...
- [AGC004E] Salvage Robots (DP)
Description 蛤蟆国的领土我们可以抽象为H*W的笼子,在这片蛤土上,有若干个机器人和一个出口,其余都是空地,每次蛤蟆会要求让所有的机器人向某个方向移动一步,当机器人移动到出口时会被蛤蟆活摘出 ...
- agc004E Salvage Robots
题意: 一个网格图,有若干机器人,还有一个出口. 操作一系列指令让机器人一起上下左右走,走出矩形就死,进入出口则得救. 最多救多少机器人? $W,H \leq 100$ 考虑不让所有机器人移动,而让出 ...
- 【agc004e】Salvage Robots
题目大意 一个n*m的矩阵,矩阵内有一个出口和若干个机器人,每一步操作可以使所有的机器人向任意方向移动一格,如果机器人出了边界就爆炸.求最多可以让多少个机器人走到出口. 解题思路 发现,移动所有机器人 ...
- codeforces ~ 1004 C Sonya and Robots (dp)
C. Sonya and Robots time limit per test 1 second memory limit per test 256 megabytes input standard ...
- AtCoder AGC001E BBQ Hard (DP、组合计数)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...
- AtCoder AGC009E Eternal Average (DP)
题目链接 https://atcoder.jp/contests/agc009/tasks/agc009_e 题解 又被劝退了... 第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\ ...
- AtCoder AGC032D Rotation Sort (DP)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_d 题解 又是一道神仙题啊啊啊啊...atcoder题真的做不来啊QAQ 第一步又是神仙转化: ...
- Atcoder ARC101 E 树dp
https://arc101.contest.atcoder.jp/tasks/arc101_c 题解是也是dp,好像是容斥做的,但是看不懂,而且也好像没讲怎么变n^2,看了写大佬的代码,自己理解了一 ...
随机推荐
- c语言中gets()的详细用法
gets从标准输入设备读字符串函数.可以无限读取,不会判断上限,以回车结束读取,所以程序员应该确保buffer的空间足够大,以便在执行读操作时不发生溢出. 从stdin流中读取字符串,直至接受到换行符 ...
- JS基础_嵌套的for循环
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- O043、计算节点宕机了怎么办
参考https://www.cnblogs.com/CloudMan6/p/5562131.html Rebuild 可以恢复损坏的instance .那如果是宿主机坏了怎么办呢?比如硬件故障或者 ...
- day8 socket
代码: 例子1:socket tcp 通讯 server端 import socketserver = socket.socket()ip_port = ("127.0.0.1", ...
- element-ui select
1. 组合 label <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> & ...
- 通过Callable接口实现多线程
一.通过Callable接口实现多线程 c.实现Callable重写call方法 实现Callable和实现Runnable类似,但是功能更强大,具体表现在 a.可以在任务结束后提供一个返回值,Run ...
- mysql_jdbc连接说明
mysql JDBC Driver 常用的有两个,一个是gjt(Giant Java Tree)组织提供的mysql驱动,其JDBC Driver名称(JAVA类名)为:org.gjt.mm.mysq ...
- 微信获取用户列表的json字符串解析
今天学习微信遇到一个json的解析,但是因为自己的模型思维和思考能力很差一直困扰最后经过询问解决的问题,其实问题很简单总结起来就是json的解析: 注释:今天主要是讲怎样解析json的所以其他方法就只 ...
- CF981F 二分+Hall定理
对于一个二分的答案 假设存在一个点集使得不满足Hall定理 题中给定的信息说明 左边每个点对应的右边点是一个区间 如果当前点集对应的右边区间是若干个不相交的区间组成的话说明我们还可以找到一个更小的点集 ...
- Winform的高DPI问题
现在的屏幕大部分都是高分屏,在这样的屏幕下开发winfrom软件就需要注意高DPI问题了 1.Form和UserControl的AutoScaleMode设置为Dpi 2.为项目添加应用程序清单文件( ...