学习socket编程继续,今天要学习的内容如下:

先来简单介绍一下这五种模型分别是哪些,偏理论,有个大致的印象就成,做个对比,因为最终只会研究一个I/O模型,也是经常会用到的,

阻塞I/O:

先用一个图来描述它:

实际上,之前我们使用的套接口I/O编程都是用该模型,针对上面的图进行说明一下:一旦套接口连接成功之后,就可以recv数据了,如下:

会向系统发起请求来接收数据,而这个recv请求是阻塞的,那什么时候解除阻塞呢,直到对方等方数据过来,填充了recv这个套接口所对应的接收缓冲区,才会解除,也就是说如图:

也就是说,接收缓冲区之前是“没有数据的”,一旦对等方发送数据过来,将接收缓冲区数据填充,这时候就会将数据从内核空间(也就是套接口接收缓冲区)复制到用户空间,如下:

因为我们在recv的时候,会提供一个buffer,如下:

一旦拷贝完成,recv函数就返回了,这时就可以进行数据处理了,如下:

非阻塞I/O【用得很少,做了解既可】:

这个模式也是调用recv函数进行数据接收,但是会将其设置为非阻塞模式(用fcntl(fd, F_SETFL, flag|O_NONBLOCK),之前有学过),这时recv函数既可没有数据到来,也不会阻塞,如果内核中没有数据时,它不会阻塞,会返回一个错误,错误代码为-1,会返回:EWOULDBLOCK,如下:
如果说还想获取数据,则需要再次判断如果等于-1,错误码等于EWOULDBLOCK,再次提交请求:
直到有数据到来,这时的动作跟阻塞模式差不多,会将数据从内核空间拷贝到用户空间,然后recv返回,然后就可以数据处理了。
但是这种模型应用是很少的,因为在数据没有到来的过程当中,我们需要不停地循环接收,直到数据到来,而这个循环接收并没有阻塞,实际上是对CPU资源的极大的浪费,对于这种循环接收,可以称为忙等待(需要等待数据,但是数据又没有到来,而又需要占用CPU时间片),这种不推荐使用。
 
I/O复用(select和poll)【这个是主要研究的对象】:
 
这种模型主要是通过select来实现的,该模式的一个思想是:用select来管理多个文件描述符,一旦有一个文件描述符检测到了有数据到来,这时select就会返回,这时recv就不会阻塞了,就可以将数据从内核空间拷到用户空间,其中阻塞提前到了select了,这个模型是这次主要研究的对象,先大致知道了解一下。
 
信号驱动I/O【用得很少,做了解既可】:
在用户空间中,利用sigaction安装一个SIGIO的信号处理程序,这时程序就可以做其它事情了,一旦有数据到来,就会以信号的方式来通知应用程序,然后处理程序就可以调用recv来接收数据,紧接着就是从内核空间到用户空间的数据拷贝过程,这时候recv函数是不会阻塞的,可见这种方式是通用信号来通知应用程序的,所以应用进程需要在信号处理程序中去处理接收数据的细节,那么这样的话就使得异步处理成为可能,所以信号是异步处理的一种方式,这里了解一下既可。
 
异步I/O:

关于这个模形,由于也没有得到推广,所以这里就略过,我们把重点花在有意义的事上。

对于上面列的五种I/O模型, 接下来主要研究I/O复用模型中的select模型,对于它,上面介绍该模型时也说过,它可以管理多个文件描述符,或者说可以管理多个I/O,

它的函数原形如下:

一旦某个I/O检测到了我们所感兴趣的事件就立刻返回,如果有多个I/O,当发生事件时,将返回到的一些事件,填充到对应的集合当中(readfds),并且返回一个事件的个数,这时候就可以轮循事件,一个个处理它,而这时候的事件是不会阻塞的,因为select已经提前阻塞了,它的返回意味着事件已经到来了,为了更好的理解select的用法,我们首先来看一下上次我们所实现的回射客户/服务器程序具有什么样的问题,来做一个回顾,然后再用select函数来解决这个问题:

这时候,将服务端关才掉,这里用kill命令来模拟:

这时再来查看下状态:

而根据TCP关闭连接的状态来看:

如果客户端read返回为0时,则应该会调close,进而服务端最终状态为TIME_WAIT状态,为啥没有进入此状态呢?对于这个,博文:http://www.cnblogs.com/webor2006/p/4023138.html 也对其进行了详细的解释,简略的说就是由于客户端阻塞在这个位置了:

本质的原因是从键盘接收数据网络接收数据这两个事件没有办法同时进行处理,这时可以用select来进行管理,管理fgets标准输入的I/O和sock套接口I/O,一旦其中一个或者多个产生可读事件,则进行处理,也就是这个时候,既可以在接收键盘数据的同时,也可以检测到网络数据的到来,这时就可以进行相应的处理,因为select函数能够解除阻塞,所以,接下来,利用它来改进回射客户端程序。

理解参数:

select可以看成是一个管理者,可以管理多个I/O,一旦其中的一个I/0检测到我们感兴趣的事件,select函数就返回,返回值为检测到的事件个数,并且返回哪些I/O发生了事件,遍历这些事件,进而处理事件,根据这些理论,对于其函数的参数就比较容易理解了:

①、fd_set *readfds:这时一个集合,表示一个读的集合,也是最常用的一个集合,表示如果检测到有读的套接口则放到这个集合中,一旦数据可读,select就可以返回。

②、fd_set *writefds【这次学习先用不上,可以直接填空】:这个从单词上来看,就很容易理解,表示可写的集合。

③、fd_set *exceptfds【这次学习先用不上,可以直接填空】:异常的集合。

④、struct timeval *timeout:这表示超时时间,如果填写NULL,则不会超时,一定要检测到事件后才会返回;如果指定是超时时间,则在超时时间到来的时候还没有检测到事件,也会返回,这时返回的事件个数就等于0,另外select返回失败为-1。

⑤、nfds:它表示存放在集合中(readfds、writefds、exceptfds)的这些描述符的最大值+1,比如:readfds集合中存放了描述符3、5、8,而writefds集合中存放了描述符4、,那么这个参数就是集合中最大描述符9+1=10。

另对,对于返回值,是返回哪些I/O发生了事件,这是什么意思呢,假如readfds集合提交了、4、,我要关心这三个I/O的可读事件,这时如果3跟5发生了可读事件,我如何标识它呢?实际上就是将readfds这个集合改变,集合的内容改成了3、5,这是返回的准备到的个数为2,用图来表示如下:

从图中描述可以看出,readfds是输出输出参数,同理,writefds、exceptfds、timeout也是输出输出参数(比如指定的是2s的时间,但是1s内就返回了,这时后它的值就为剩余的时间)。

与select这些集合操作相配合的有四个宏进行操作,下面来简述一下,之后都会用到:

将文件描述符fd从集合set当中移除。

判定文件描述符fd是否在集合set中,注意:这里的set不是输入输出参数,也就是只读的。

将文件描述符fd添加到集合set当中。

清空集合。

好了,下面就用上面的一些理论来改进程序,来更好的理解select函数的用法,对于之前的代码,只需要对客户端这个函数的实现进行改进,如下:

首先先将函数的实现注释掉,然后一步步用select来改造,根据select的参数来编写:

第一步,首先获得最大的文件描述符,也是第一个填充第一个参数:

另外可以将sock和stdin两个文件描述符加入到集合中:

接下来,由于事件成功返回了,那就可以判断标准输入fd_stdin、sock是否在rset集合里,如果在集合中就证明已经检测到了事件,然后就可以分别进行判断处理了:

对于套接口产生事件,应该将原来的代码挪进来:

实现如下:

对于键盘的输入事件,也应该将原来的代码挪过来,如下:

具体代码如下:

下面编译运行看下之前的问题有没有解决:

这些状态都比较好理解,下面到了关键验证步骤,就是先将服务端关闭掉:

从中可以看到,服务端变为了TIME_WAIT状态,也就是向前进常迈进了,这次就不会因为fgets阻塞造成无法进入此正常状态了,而客户端这时就变为CLOSED状态了,当然通过命令就看不到此状态了,如下:

最后再贴一下经过改用select修改的客户服务回射的完整代码如下:

echosrv.c:

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <sys/wait.h> #include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while() ssize_t readn(int fd, void *buf, size_t count)
{
size_t nleft = count;
ssize_t nread;
char *bufp = (char*)buf; while (nleft > )
{
if ((nread = read(fd, bufp, nleft)) < )
{
if (errno == EINTR)
continue;
return -;
}
else if (nread == )
return count - nleft; bufp += nread;
nleft -= nread;
} return count;
} ssize_t writen(int fd, const void *buf, size_t count)
{
size_t nleft = count;
ssize_t nwritten;
char *bufp = (char*)buf; while (nleft > )
{
if ((nwritten = write(fd, bufp, nleft)) < )
{
if (errno == EINTR)
continue;
return -;
}
else if (nwritten == )
continue; bufp += nwritten;
nleft -= nwritten;
} return count;
} ssize_t recv_peek(int sockfd, void *buf, size_t len)
{
while ()
{
int ret = recv(sockfd, buf, len, MSG_PEEK);
if (ret == - && errno == EINTR)
continue;
return ret;
}
} ssize_t readline(int sockfd, void *buf, size_t maxline)
{
int ret;
int nread;
char *bufp = buf;
int nleft = maxline;
while ()
{
ret = recv_peek(sockfd, bufp, nleft);
if (ret < )
return ret;
else if (ret == )
return ret; nread = ret;
int i;
for (i=; i<nread; i++)
{
if (bufp[i] == '\n')
{
ret = readn(sockfd, bufp, i+);
if (ret != i+)
exit(EXIT_FAILURE); return ret;
}
} if (nread > nleft)
exit(EXIT_FAILURE); nleft -= nread;
ret = readn(sockfd, bufp, nread);
if (ret != nread)
exit(EXIT_FAILURE); bufp += nread;
} return -;
} void echo_srv(int conn)
{
char recvbuf[];
while ()
{
memset(recvbuf, , sizeof(recvbuf));
int ret = readline(conn, recvbuf, );
if (ret == -)
ERR_EXIT("readline");
if (ret == )
{
printf("client close\n");
break;
} fputs(recvbuf, stdout);
writen(conn, recvbuf, strlen(recvbuf));
}
} void handle_sigchld(int sig)
{
/* wait(NULL);*/
while (waitpid(-, NULL, WNOHANG) > )
;
} int main(void)
{
/* signal(SIGCHLD, SIG_IGN);*/
signal(SIGCHLD, handle_sigchld);
int listenfd;
if ((listenfd = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < )
/* if ((listenfd = socket(PF_INET, SOCK_STREAM, 0)) < 0)*/
ERR_EXIT("socket"); struct sockaddr_in servaddr;
memset(&servaddr, , sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons();
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
/*servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");*/
/*inet_aton("127.0.0.1", &servaddr.sin_addr);*/ int on = ;
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < )
ERR_EXIT("setsockopt"); if (bind(listenfd, (struct sockaddr*)&servaddr, sizeof(servaddr)) < )
ERR_EXIT("bind");
if (listen(listenfd, SOMAXCONN) < )
ERR_EXIT("listen"); struct sockaddr_in peeraddr;
socklen_t peerlen = sizeof(peeraddr);
int conn; pid_t pid;
while ()
{
if ((conn = accept(listenfd, (struct sockaddr*)&peeraddr, &peerlen)) < )
ERR_EXIT("accept"); printf("ip=%s port=%d\n", inet_ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port)); pid = fork();
if (pid == -)
ERR_EXIT("fork");
if (pid == )
{
close(listenfd);
echo_srv(conn);
exit(EXIT_SUCCESS);
}
else
close(conn);
} return ;
}

echocli.c:

#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h> #include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while() ssize_t readn(int fd, void *buf, size_t count)
{
size_t nleft = count;
ssize_t nread;
char *bufp = (char*)buf; while (nleft > )
{
if ((nread = read(fd, bufp, nleft)) < )
{
if (errno == EINTR)
continue;
return -;
}
else if (nread == )
return count - nleft; bufp += nread;
nleft -= nread;
} return count;
} ssize_t writen(int fd, const void *buf, size_t count)
{
size_t nleft = count;
ssize_t nwritten;
char *bufp = (char*)buf; while (nleft > )
{
if ((nwritten = write(fd, bufp, nleft)) < )
{
if (errno == EINTR)
continue;
return -;
}
else if (nwritten == )
continue; bufp += nwritten;
nleft -= nwritten;
} return count;
} ssize_t recv_peek(int sockfd, void *buf, size_t len)
{
while ()
{
int ret = recv(sockfd, buf, len, MSG_PEEK);
if (ret == - && errno == EINTR)
continue;
return ret;
}
} ssize_t readline(int sockfd, void *buf, size_t maxline)
{
int ret;
int nread;
char *bufp = buf;
int nleft = maxline;
while ()
{
ret = recv_peek(sockfd, bufp, nleft);
if (ret < )
return ret;
else if (ret == )
return ret; nread = ret;
int i;
for (i=; i<nread; i++)
{
if (bufp[i] == '\n')
{
ret = readn(sockfd, bufp, i+);
if (ret != i+)
exit(EXIT_FAILURE); return ret;
}
} if (nread > nleft)
exit(EXIT_FAILURE); nleft -= nread;
ret = readn(sockfd, bufp, nread);
if (ret != nread)
exit(EXIT_FAILURE); bufp += nread;
} return -;
} void echo_cli(int sock)
{
/*
char sendbuf[1024] = {0};
char recvbuf[1024] = {0};
while (fgets(sendbuf, sizeof(sendbuf), stdin) != NULL)
{
writen(sock, sendbuf, strlen(sendbuf)); int ret = readline(sock, recvbuf, sizeof(recvbuf));
if (ret == -1)
ERR_EXIT("readline");
else if (ret == 0)
{
printf("client close\n");
break;
} fputs(recvbuf, stdout);
memset(sendbuf, 0, sizeof(sendbuf));
memset(recvbuf, 0, sizeof(recvbuf));
} close(sock);
*/ fd_set rset;//声明一个可读的集合
FD_ZERO(&rset);//将集合清空 int nready;//检测到的事件个数 //获得最大的文件描述符
int maxfd;
int fd_stdin = fileno(stdin);
if (fd_stdin > sock)
maxfd = fd_stdin;
else
maxfd = sock; char sendbuf[] = {};
char recvbuf[] = {};
while ()
{
FD_SET(fd_stdin, &rset);
FD_SET(sock, &rset);
nready = select(maxfd+, &rset, NULL, NULL, NULL); if (nready == -)
ERR_EXIT("select"); if (nready == )
continue; if (FD_ISSET(sock, &rset))
{//套接口产生了事件
int ret = readline(sock, recvbuf, sizeof(recvbuf));
if (ret == -)
ERR_EXIT("readline");
else if (ret == )
{
printf("server close\n");
break;
} fputs(recvbuf, stdout);
memset(recvbuf, , sizeof(recvbuf));
}
if (FD_ISSET(fd_stdin, &rset))
{//标准输入产生的事件
if (fgets(sendbuf, sizeof(sendbuf), stdin) == NULL)
break;
writen(sock, sendbuf, strlen(sendbuf));
memset(sendbuf, , sizeof(sendbuf));
}
} close(sock);
} void handle_sigpipe(int sig)
{
printf("recv a sig=%d\n", sig);
} int main(void)
{
/*
signal(SIGPIPE, handle_sigpipe);
*/
signal(SIGPIPE, SIG_IGN);
int sock;
if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < )
ERR_EXIT("socket"); struct sockaddr_in servaddr;
memset(&servaddr, , sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons();
servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); if (connect(sock, (struct sockaddr*)&servaddr, sizeof(servaddr)) < )
ERR_EXIT("connect"); struct sockaddr_in localaddr;
socklen_t addrlen = sizeof(localaddr);
if (getsockname(sock, (struct sockaddr*)&localaddr, &addrlen) < )
ERR_EXIT("getsockname"); printf("ip=%s port=%d\n", inet_ntoa(localaddr.sin_addr), ntohs(localaddr.sin_port)); echo_cli(sock); return ;
}

好了,夜幕降临了,得准备入睡,明天还得上班,下回见~~~

linux网络编程之socket编程(八)的更多相关文章

  1. linux网络编程之socket编程(四)

    经过两周的等待,终于可以回归我正常的学习之旅了,表哥来北京了在我这暂住,晚上回家了基本在和他聊天,周末带他在北京城到处乱转,几乎剥夺了我自由学习的时间了,不过,亲人之情还是很难得的,工作学习并不是生活 ...

  2. linux网络编程之socket编程(一)

    今天开始,继续来学习linux编程,这次主要是研究下linux下的网络编程,而网络编程中最基本的需从socket编程开始,下面正式开始学习: 什么是socket: 在学习套接口之前,先要回顾一下Tcp ...

  3. linux网络编程之socket编程(六)

    经过一个国庆长假,又有一段时间没有写博文了,今天继续对linux网络编程进行学习,如今的北京又全面进入雾霾天气了,让我突然想到了一句名句:“真爱生活,珍惜生命”,好了,言归正传. 回顾一下我们之间实现 ...

  4. linux网络编程之socket编程(十六)

    继续学习socket编程,今天的内容会有些难以理解,一步步来分解,也就不难了,正入正题: 实际上sockpair有点像之前linux系统编程中学习的pipe匿名管道,匿名管道它是半双工的,只能用于亲缘 ...

  5. linux网络编程之socket编程(十五)

    今天继续学习socket编程,这次主要是学习UNIX域协议相关的知识,下面开始: [有个大概的认识,它是来干嘛的] ①.UNIX域套接字与TCP套接字相比较,在同一台主机的传输速度前者是后者的两倍. ...

  6. linux网络编程之socket编程(三)

    今天继续对socket编程进行学习,在学习之前,需要回顾一下上一篇中编写的回射客户/服务器程序(http://www.cnblogs.com/webor2006/p/3923254.html),因为今 ...

  7. linux网络编程之socket编程(二)

    今天继续对socket编程进行研究,这里会真正开如用socket写一个小例子,进入正题: TCP客户/服务器模型:   关于这个模型的流程这里就不多说了,比较容易理解,下面则利用这种模型来编写一个实际 ...

  8. linux网络编程之socket编程(十二)

    今天继续学习socket编程,期待的APEC会议终于在京召开了,听说昨晚鸟巢那灯火通明,遍地礼花,有点08年奥运会的架势,有种冲动想去瞅见一下习大大的真容,"伟大的祖国,我爱你~~~&quo ...

  9. linux网络编程之socket编程(十一)

    今天继续学习socket编程,这次主要是学习超时方法的封装,内容如下: ①.alarm[不常用,了解既可] 它的实现思路是这样的: 但是这种方案有一定的问题,因为闹钟可能会作为其它的用途,这时所设置的 ...

随机推荐

  1. AWS 数据传输加速(八)

    AWS CloudFront 概述 一个CDN服务,加快网页和其它下载全球分布式网络缓存服务器 CloudFront通过全球性的边缘站点将内容缓存到世界各地实现CDN 在更邻近的位置提供更低的延迟,更 ...

  2. sriov-网络问题Debug记录

    我司容器云平台使用了sriov的底层网络模型,这个网络驱动的好处是配置少,转发效率高,但是缺点也很明显,出了问题比较难Debug. 现就工作中出现的问题记录如下: 容器删除后,或者docker进程异常 ...

  3. WPF TextBlock 文本换行的两种方式

    第一种: <TextBlock> This is line 1.<LineBreak/> This is line 2. </TextBlock> 第二种 < ...

  4. jenkins publish .net core application to linux server in docker

    上一个Demo进行了单独的Jenkins远程部署, 本Demo将使用流行的Jenkins+Git+Docker进行持续部署. 准备Linux服务器 和上一篇Demo一样, 在Azure创建一台Cent ...

  5. JAVA线程中的发牌题

    发牌题主要考虑的就是线程的问题,一个buffer缓冲区的问题, 首先,发牌的优先级当然是最高的了,但是取牌不能有优先级,否则会一直有牌先取,因此需要一个信号量order,当order=线程的数字时,取 ...

  6. java当中JDBC当中的transaction例子

    [学习笔记] 7.jdbc的transaction例子: import java.sql.*; public class MySQlTransaction1 { public static void ...

  7. noip2019集训测试赛(二十一)Problem B: 红蓝树

    noip2019集训测试赛(二十一)Problem B: 红蓝树 Description 有一棵N个点,顶点标号为1到N的树.N−1条边中的第i条边连接顶点ai和bi.每条边在初始时被染成蓝色.高桥君 ...

  8. ~json库的使用

    一.json简介 json全称"JavaScript Object Notation"(JavaScript对象表示法)它是一种基于文本,独立于语言的轻量级数据交换格式.易于让人阅 ...

  9. python数据库基础

    1.数据类型:(使用原则:够用就行,尽量使用范围小的) 整数:int,bit 小数:decimal 字符串:varchar(可变长度),char(固定长度字符串) 日期时间:date,time,dat ...

  10. Python进阶:对象复制与比较,分深浅,见真假

    "==" 与 is python 为 10 开辟内存空间, a与b同时指向这块内存,即a与b的值相等,a与b的id也相等.因此 a==b 与 a is b 都返回True: a = ...