MySQL行(记录)的操作(二) -- 多表查询

数据的准备

#建表
create table department(
id int,
name varchar(20)
);

create table employee(
id int primary key auto_increment,
name varchar(20),
sex enum('male','female') not null default 'male',
age int,
dep_id int
);

#插入数据
insert into department values
(200,'技术'),
(201,'人力资源'),
(202,'销售'),
(203,'运营');

insert into employee(name,sex,age,dep_id) values
('egon','male',18,200),
('alex','female',48,201),
('wupeiqi','male',38,201),
('yuanhao','female',28,202),
('liwenzhou','male',18,200),
('jingliyang','female',18,204)
;
#查看表结构和数据
mysql> desc department;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| id | int(11) | YES | | NULL | |
| name | varchar(20) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+

mysql> desc employee;
+--------+-----------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+-----------------------+------+-----+---------+----------------+
| id | int(11) | NO | PRI | NULL | auto_increment |
| name | varchar(20) | YES | | NULL | |
| sex | enum('male','female') | NO | | male | |
| age | int(11) | YES | | NULL | |
| dep_id | int(11) | YES | | NULL | |
+--------+-----------------------+------+-----+---------+----------------+

mysql> select * from department;
+------+--------------+
| id | name |
+------+--------------+
| 200 | 技术 |
| 201 | 人力资源 |
| 202 | 销售 |
| 203 | 运营 |
+------+--------------+

mysql> select * from employee;
+----+------------+--------+------+--------+
| id | name | sex | age | dep_id |
+----+------------+--------+------+--------+
| 1 | egon | male | 18 | 200 |
| 2 | alex | female | 48 | 201 |
| 3 | wupeiqi | male | 38 | 201 |
| 4 | yuanhao | female | 28 | 202 |
| 5 | liwenzhou | male | 18 | 200 |
| 6 | jingliyang | female | 18 | 204 |
+----+------------+--------+------+--------+

表department与employee

1. 多表连接查询

# 重点: 外连接表的语法

select 字段列表
    from 表1 inner|left|right|join 表2
    on 表1.字段 = 表2.字段;

1.1 笛卡尔积连接: 不适用任何匹配条件,将多张表所有的数据一一对于对应,生产一张大表.

图示笛卡尔积:

代码表示:

mysql> select * from employee,department;
结果:
+----+------------+--------+------+--------+------+--------------+
| id | name       | sex    | age  | dep_id | id   | name         |
+----+------------+--------+------+--------+------+--------------+
|  1 | egon       | male   |   18 |    200 |  200 | 技术         |
|  1 | egon       | male   |   18 |    200 |  201 | 人力资源     |
|  1 | egon       | male   |   18 |    200 |  202 | 销售         |
|  1 | egon       | male   |   18 |    200 |  203 | 运营         |
|  2 | alex       | female |   48 |    201 |  200 | 技术         |
|  2 | alex       | female |   48 |    201 |  201 | 人力资源     |
|  2 | alex       | female |   48 |    201 |  202 | 销售         |
|  2 | alex       | female |   48 |    201 |  203 | 运营         |
|  3 | wupeiqi    | male   |   38 |    201 |  200 | 技术         |
|  3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
|  3 | wupeiqi    | male   |   38 |    201 |  202 | 销售         |
|  3 | wupeiqi    | male   |   38 |    201 |  203 | 运营         |
|  4 | yuanhao    | female |   28 |    202 |  200 | 技术         |
|  4 | yuanhao    | female |   28 |    202 |  201 | 人力资源     |
|  4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
|  4 | yuanhao    | female |   28 |    202 |  203 | 运营         |
|  5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
|  5 | liwenzhou  | male   |   18 |    200 |  201 | 人力资源     |
|  5 | liwenzhou  | male   |   18 |    200 |  202 | 销售         |
|  5 | liwenzhou  | male   |   18 |    200 |  203 | 运营         |
|  6 | jingliyang | female |   18 |    204 |  200 | 技术         |
|  6 | jingliyang | female |   18 |    204 |  201 | 人力资源     |
|  6 | jingliyang | female |   18 |    204 |  202 | 销售         |
|  6 | jingliyang | female |   18 |    204 |  203 | 运营         |
+----+------------+--------+------+--------+------+--------------+

但是我们知道这样的表太过于冗余,根本不是我们想看到的样子.

它应该时这样的:

我们的目标就是将两个分散出去的表,按照两者之间有关系的字段,能对应上的字段,把两者合并成一张表,这就是多表查询的一个本质。

怎么做呢?

来个where条件来筛选不就行了.

select * from employee, department where employee.dep_id = department.id;
结果:
+----+-----------+--------+------+--------+------+--------------+
| id | name      | sex    | age  | dep_id | id   | name         |
+----+-----------+--------+------+--------+------+--------------+
|  1 | egon      | male   |   18 |    200 |  200 | 技术         |
|  2 | alex      | female |   48 |    201 |  201 | 人力资源     |
|  3 | wupeiqi   | male   |   38 |    201 |  201 | 人力资源     |
|  4 | yuanhao   | female |   28 |    202 |  202 | 销售         |
|  5 | liwenzhou | male   |   18 |    200 |  200 | 技术         |
+----+-----------+--------+------+--------+------+--------------+
这就是我们想要的展现形式.

但是有两个问题:

1. 我们左表employee表中的dep_id为204的那个数据没有了,右表department表的id为203的数据没有了,因为我们现在要的就是两表能对应上的数据一起查出来,那个204和203双方对应不上,有些场景可以符合,但还有一些场景就不符合了,如: 我想得到所有人的信息,就算它不属于任何一个职位.
2. 可读性不好,看图:

1.2 内连接: 只连接匹配的行

mysql> select * from employee inner join department on employee.dep_id = department.id  where department.name = '技术';
+----+-----------+------+------+--------+------+--------+
| id | name      | sex  | age  | dep_id | id   | name   |
+----+-----------+------+------+--------+------+--------+
|  1 | egon      | male |   18 |    200 |  200 | 技术   |
|  5 | liwenzhou | male |   18 |    200 |  200 | 技术   |
+----+-----------+------+------+--------+------+--------+

现在解决了第二个问题,把连表的操作和查询的操作分开了,可读性提高了...

1.3 外连接之左连接: 优先显示左表的全部记录

以左表为准,即找出所有员工信息,当然包括没有部门的员工
#本质就是:在内连接的基础上增加左边有右边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee left join department on employee.dep_id=department.id;
+----+------------+--------------+
| id | name       | depart_name  |
+----+------------+--------------+
|  1 | egon       | 技术         |
|  5 | liwenzhou  | 技术         |
|  2 | alex       | 人力资源     |
|  3 | wupeiqi    | 人力资源     |
|  4 | yuanhao    | 销售         |
|  6 | jingliyang | NULL         |
+----+------------+--------------+

现在解决第一个问题, 解决一些需要像上方一样的显示.

1.4 外连接之右连接: 优先显示右表全部记录

#以右表为准,即找出所有部门信息,包括没有员工的部门
#本质就是:在内连接的基础上增加右边有左边没有的结果
mysql> select employee.id,employee.name,department.name as depart_name from employee right join department on employee.dep_id=department.id;
+------+-----------+--------------+
| id   | name      | depart_name  |
+------+-----------+--------------+
|    1 | egon      | 技术         |
|    2 | alex      | 人力资源     |
|    3 | wupeiqi   | 人力资源     |
|    4 | yuanhao   | 销售         |
|    5 | liwenzhou | 技术         |
| NULL | NULL      | 运营         |
+------+-----------+--------------+

1.5 全外连接: 显示左右两表全部记录

全外连接:在内连接的基础上增加左边有右边没有的和右边有左边没有的结果
#注意:mysql不支持全外连接 full JOIN
#强调:mysql可以使用此种方式间接实现全外连接
select * from employee left join department on employee.dep_id = department.id
union
select * from employee right join department on employee.dep_id = department.id
;
#查看结果
+------+------------+--------+------+--------+------+--------------+
| id   | name       | sex    | age  | dep_id | id   | name         |
+------+------------+--------+------+--------+------+--------------+
|    1 | egon       | male   |   18 |    200 |  200 | 技术         |
|    5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
|    2 | alex       | female |   48 |    201 |  201 | 人力资源     |
|    3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
|    4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
|    6 | jingliyang | female |   18 |    204 | NULL | NULL        |
| NULL | NULL       | NULL   | NULL |   NULL |  203 | 运营         |
+------+------------+--------+------+--------+------+--------------+

#注意 union与union all的区别:union会去掉相同的纪录,而union all 不会去掉相同的记录.
如:
+------+------------+--------+------+--------+------+--------------+
| id   | name       | sex    | age  | dep_id | id   | name         |
+------+------------+--------+------+--------+------+--------------+
|    1 | egon       | male   |   18 |    200 |  200 | 技术         |
|    2 | alex       | female |   48 |    201 |  201 | 人力资源     |
|    3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
|    4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
|    5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
| NULL | NULL       | NULL   | NULL |   NULL |  203 | 运营         |
|    1 | egon       | male   |   18 |    200 |  200 | 技术         |
|    5 | liwenzhou  | male   |   18 |    200 |  200 | 技术         |
|    2 | alex       | female |   48 |    201 |  201 | 人力资源     |
|    3 | wupeiqi    | male   |   38 |    201 |  201 | 人力资源     |
|    4 | yuanhao    | female |   28 |    202 |  202 | 销售         |
|    6 | jingliyang | female |   18 |    204 | NULL | NULL         |
+------+------------+--------+------+--------+------+--------------+

2. 子查询

#1:子查询是将一个查询语句嵌套在另一个查询语句中。
#2:内层查询语句的查询结果,可以为外层查询语句提供查询条件。
#3:子查询中可以包含:IN、NOT IN、ANY、ALL、EXISTS 和 NOT EXISTS等关键字
#4:还可以包含比较运算符:= 、 !=、> 、<等

1. 带in关键字的子查询

#查询平均年龄在25岁以上的部门名
select name from department
    where id in
        (select dep_id from employee group by dep_id having avg(age) > 25);

#查看技术部员工姓名
select name from employee
    where dep_id in
        (select id from department where name='技术');

#查看不足1人的部门名(子查询得到的是有人的部门id)
select name from department where id not in (select distinct dep_id from employee);

2. 带比较运算符的子查询

#比较运算符:=、!=、>、>=、<、<=、<>
#查询大于所有人平均年龄的员工名与年龄
mysql> select name,age from emp where age > (select avg(age) from emp);
+---------+------+
| name    | age  |
+---------+------+
| alex    | 48   |
| wupeiqi | 38   |
+---------+------+
2 rows in set (0.00 sec)

#查询大于部门内平均年龄的员工名、年龄
select t1.name,t1.age from emp t1
inner join
(select dep_id,avg(age) avg_age from emp group by dep_id) t2
on t1.dep_id = t2.dep_id
where t1.age > t2.avg_age; 

3. 带exists关键字的子查询

exists关键字表示存在,在使用exists关键字时,内层查询语句不返回查询记录,而是返回一个真假值,True或False.

返回True时,外层查询语句可以运行查询,如果是False时,外层查询语句不运行查询.

#department表中存在dept_id=203,Ture
mysql> select * from employee
    ->     where exists
    ->         (select id from department where id=200);
+----+------------+--------+------+--------+
| id | name       | sex    | age  | dep_id |
+----+------------+--------+------+--------+
|  1 | egon       | male   |   18 |    200 |
|  2 | alex       | female |   48 |    201 |
|  3 | wupeiqi    | male   |   38 |    201 |
|  4 | yuanhao    | female |   28 |    202 |
|  5 | liwenzhou  | male   |   18 |    200 |
|  6 | jingliyang | female |   18 |    204 |
+----+------------+--------+------+--------+

#department表中存在dept_id=205,False
mysql> select * from employee
    ->     where exists
    ->         (select id from department where id=204);
Empty set (0.00 sec)

百万年薪python之路 -- MySQL数据库之 MySQL行(记录)的操作(二) -- 多表查询的更多相关文章

  1. 百万年薪python之路 -- MySQL数据库之 MySQL行(记录)的操作(一)

    MySQL的行(记录)的操作(一) 1. 增(insert) insert into 表名 value((字段1,字段2...); # 只能增加一行记录 insert into 表名 values(字 ...

  2. 百万年薪python之路 -- MySQL数据库之 永久修改字符串编码 与 忘了密码和修改密码

    永久修改字符集编码的方法: 在mysql安装目录下创建一个my.ini(Windows下)文件,写入下面的配置,然后重启服务端. [client] #设置mysql客户端默认字符集 default-c ...

  3. 百万年薪python之路 -- MySQL数据库之 完整性约束

    MySQL完整性约束 一. 介绍 为了防止不符合规范的数据进入数据库,在用户对数据进行插入.修改.删除等操作时,DBMS自动按照一定的约束条件对数据进行监测,使不符合规范的数据不能进入数据库,以确保数 ...

  4. 百万年薪python之路 -- MySQL数据库之 存储引擎

    MySQL之存储引擎 一. 存储引擎概述 定义: 存储引擎是mysql数据库独有的存储数据.为数据建立索引.更新数据.查询数据等技术的实现方法 ​ 首先声明一点: 存储引擎这个概念只有MySQL才有. ...

  5. 百万年薪python之路 -- MySQL数据库之 常用数据类型

    MySQL常用数据类型 一. 常用数据类型概览 # 1. 数字: 整型: tinyint int bigint 小数: float: 在位数比较短的情况下不精确 double: 在位数比较长的情况下不 ...

  6. 百万年薪python之路 -- 数据库初始

    一. 数据库初始 1. 为什么要有数据库? ​ 先来一个场景: ​ 假设现在你已经是某大型互联网公司的高级程序员,让你写一个火车票购票系统,来hold住十一期间全国的购票需求,你怎么写? 由于在同一时 ...

  7. 百万年薪python之路 -- 并发编程之 协程

    协程 一. 协程的引入 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两 ...

  8. 百万年薪python之路 -- 面向对象之 反射,双下方法

    面向对象之 反射,双下方法 1. 反射 计算机科学领域主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省) python面向对象中的反射:通过字符串的形式操作对象相关的属性.python ...

  9. MySQL数据库(四)—— 记录相关操作之插入、更新、删除、查询(单表、多表)

    一.插入数据(insert) 1. 插入完整数据(顺序插入) 语法一: INSERT INTO 表名(字段1,字段2,字段3…字段n) VALUES(值1,值2,值3…值n); # 后面的值必须与字段 ...

随机推荐

  1. 搭建第一个node服务器

    1.在项目文件夹根目录创建app.js: (1)先引入模块 const http = require('http');//http是安装好node就有的一个模块,是用来创建http服务器的 (2)创建 ...

  2. LeetCode 430. Faltten a Multilevel Doubly Linked List

    题目链接:LeetCode 430. Faltten a Multilevel Doubly Linked List class Node { public: int val = NULL; Node ...

  3. linux环境下Nginx的安装

    因为工作环境大多数都是windows server服务器,仅有的linux服务器同事们都在抢着用,所以特意买了一台阿里云服务器,感兴趣的小伙伴可以了解一下,一年只要293: https://promo ...

  4. 删除pdf中的链接

    在Acrobat中打开pdf文件,然后:编辑→首选项→一般→自动从文本检测URL,把此处的对勾去掉,以后就不会变为食指按的形状了! 还有以下的方法 方法1:“高级(A)”→“链接(L)”→“删除文档中 ...

  5. .Net Core 跨平台:一个简单程序的多平台(windows、Linux、osx)发布

    .Net Core 跨平台:一个简单程序的多平台(windows.Linux.osx)发布 .Net Core 3.0 已于2019年9月23日发布了,包含了一些新特性,具体参见Announcing ...

  6. 浏览器端获取短信验证码java实现——阿里云短信服务

    需求:浏览器端输入手机号,获取验证码.点击登录,验证验证码是否输入错误.是否超时等情况,一旦校验通过,将用户数据保存到数据中(业务逻辑). 前提:注册阿里用户,开通短信服务,申请key.秘钥.签名.短 ...

  7. Linux 常用解压和压缩命令

    .tar 解包 tar xvf filename.tar.tar 打包 tar cvf filename.tar dirname.gz 解压1 gunzip filename.gz.gz 解压2 gz ...

  8. Angular 文件上传、下载

    1. 文件上传 本地可同时选择多个文件 将本地所选择的文件列出来 单个文件上传至服务器: 删除本地选择的文件 样式使用了bootstrap的样式 1. html - file.component.ht ...

  9. Mongoose: aggregate聚合 $group使用说明

    aggregate聚合是通过管道操作实现的.聚合管道里的每一步输出,都会作为下一步的输入,每一步在输入文档执行完操作后生成输出文档. 聚合管道:  $project 修改输入文档的结构.可以用来重命名 ...

  10. 卷积神经网络CNN识别MNIST数据集

    这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: impor ...