Piggy-Bank

TimeLimit: 2000/1000 MS (Java/Others)  MemoryLimit: 65536/32768 K (Java/Others)
64-bit integer IO format:%I64d
 
Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
SampleInput
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
SampleOutput
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible. 思路:裸的完全背包
 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn = ;
int weight[maxn], value[maxn];
int dp[][];
int main()
{
int n;
scanf("%d",&n);
while(n--)
{
memset(weight,,sizeof(weight));
memset(value,,sizeof(value));
memset(dp,INF,sizeof(dp));
int v1,v2,v;
scanf("%d%d",&v1,&v2);
v=v2-v1;
int m;
scanf("%d",&m);
for(int i=; i<=m; i++)
scanf("%d%d",&value[i],&weight[i]);
dp[][]=;
for(int i=; i<=m; i++)
{
for(int j=; j<=v; j++)
dp[i][j]=dp[i-][j];
for(int j=weight[i]; j<=v; j++)
dp[i][j]=min(dp[i][j], dp[i][j-weight[i]] + value[i] ) ; }
if(dp[m][v]!=INF)
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[m][v]);
else
printf("This is impossible.\n");
}
return ;
}

背包形动态规划 fjutoj1380 Piggy-Bank的更多相关文章

  1. 背包形动态规划 fjutoj2347 采药

    采药 TimeLimit:1000MS  MemoryLimit:128MB 64-bit integer IO format:%lld   Problem Description 辰辰是个天资聪颖的 ...

  2. 背包形动态规划 fjutoj2375 金明的预算方案

    金明的预算方案 TimeLimit:1000MS  MemoryLimit:128MB 64-bit integer IO format:%lld   Problem Description 金明今天 ...

  3. CJOJ 2040 【一本通】分组背包(动态规划)

    CJOJ 2040 [一本通]分组背包(动态规划) Description 一个旅行者有一个最多能用V公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2, ...

  4. CJOJ 2307 【一本通】完全背包(动态规划)

    CJOJ 2307 [一本通]完全背包(动态规划) Description 设有n种物品,每种物品有一个重量及一个价值.但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干 ...

  5. 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)

    [BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...

  6. nyist oj 311 全然背包 (动态规划经典题)

    全然背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 直接说题意,全然背包定义有N种物品和一个容量为V的背包.每种物品都有无限件可用.第i种物品的体积是c,价值是 ...

  7. 【Python】0/1背包、动态规划

    0/1背包问题:在能承受一定重量的背包中,放入重量不同,价值不同的几件物品,怎样放能让背包中物品的价值最大? 比如,有三件物品重量w,价值v分别是 w=[5,3,2] v=[9,7,8] 包的容量是5 ...

  8. 【背包型动态规划】灵魂分流药剂(soultap) 解题报告

    问题来源 BYVoid魔兽世界模拟赛 [问题描述] 皇家炼金师赫布瑞姆刚刚发明了一种用来折磨一切生物的新产品,灵魂分流药剂.灵魂分流药剂的妙处在于能够给服用者带来巨大的痛苦,但是却不会让服用者死去,而 ...

  9. 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

    一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...

随机推荐

  1. Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍

    模型定义 如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布 ...

  2. ride.py在运行python3.×版本后导致无法运行及解决办法

    最近一直在自学python自动化,网上看到rf框架挺适合初学自动化测试,于是通过虫师的搭建了rf框架, 但是在使用过程中遇到了一个问题,在网上没有找到明确解决办法于是想到记录一下 之前为了搭建rf框架 ...

  3. 数据结构之队列java版

    //java由于泛型的擦除,用起来十分不方便 abstract class BaseQueue<T>{ abstract boolean enQueue(T x); abstract T ...

  4. Redis批量删除key的小技巧,你知道吗?

    在使用redis的过程中,经常会遇到要批量删除某种规则的key,但是redis提供了批量查询一类key的命令keys或scan,没有提供批量删除某种规则key的命令,怎么办?看完本文即可,哈哈. 本文 ...

  5. WIZnet-io6Library下载及使用

    概观 io6Library是一个IPv6集成库,可以轻松集成和管理使用WIZnet硬连线双TCP / IP堆栈控制器(WIZCHIP)产品系列的用户应用程序. io6Library用于管理依赖于用户特 ...

  6. redis高可用之DNS篇

    1.  背景 例如,存在一套redis主从(主从节点在不同的主机上),应用程序通过主库的ip进行读写操作. 但是,主库一旦出现故障,虽然有从库,且从库提升为主库,但是应用程序如果想使用从库则必须修改配 ...

  7. 算法之《图》Java实现

    数据结构之图 定义(百度百科) 图的术语表 无向图 深度优先搜索 广度优先遍历 有向图 路径问题 调度问题 强连通性 最小生成树(无向图) 最小生成树的贪心算法 加权无向图的数据结构 Kruskal算 ...

  8. 洛谷 P2044 [NOI2012]随机数生成器

    题意简述 读入X[0], m, a, c, n和g $ X[n+1]=(a*X[n]+c)\mod m $ 求X数列的第n项对g取余的值. 题解思路 矩阵加速 设\[ F=\begin{bmatrix ...

  9. 【转】linux tar.gz zip 解压缩 压缩命令

    http://apps.hi.baidu.com/share/detail/37384818 download ADT link http://dl.google.com/android/ADT-0. ...

  10. (十)c#Winform自定义控件-横向列表

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...