要实现MVVM 响应式原理,要实现如下几点

  1、实现一个数据监听器Observer,能够对数据对象的所有属性进行监听,如有变动可拿到最新值并通知订阅者
  2、实现一个指令解析器Compile,对每个元素节点的指令进行扫描和解析,根据指令模板替换数据,以及绑定相应的更新函数
  3、实现一个Watcher,作为连接Observer和Compile的桥梁,能够订阅并收到每个属性变动的通知,执行指令绑定的相应回调函数,从而更新视图
  4、mvvm入口函数,整合以上三者
 
1、实现Observer
我们知道可以利用 Object.defineProperty() 来监听属性变化,那么将需要observe的数据对象进行递归遍历,包括子属性对象的属性,都加上 setter和getter 这样的话,给这个对象的某个值赋值,就会触发setter,那么就能监听到了数据变化。。。相关代码可以是这样:
 
var data = {name: 'zhimeng'};
observe(data);
data.name = 'zhimeng520'; // 哈哈哈,监听到值变化了 zhimeng --> zhimeng520 function observe(data) {
if (!data || typeof data !== 'object') {
return;
}
// 取出所有属性遍历
Object.keys(data).forEach(function(key) {
defineReactive(data, key, data[key]);
});
}; function defineReactive(data, key, val) {
observe(val); // 监听子属性
Object.defineProperty(data, key, {
enumerable: true, // 可枚举
configurable: false, // 不能再define
get: function() {
return val;
},
set: function(newVal) {
console.log('哈哈哈,监听到值变化了 ', val, ' --> ', newVal);
val = newVal;
}
});
}

  

这样我们已经可以监听每个数据的变化了,那么监听到变化之后就是怎么通知订阅者了,所以接下来我们需要实现一个消息订阅器,很简单,维护一个数组,用来收集订阅者,数据变动触发notify,再调用订阅者的update方法,代码改善之后是这样:
 
// ... 省略
function defineReactive(data, key, val) {
var dep = new Dep();
observe(val); // 监听子属性 Object.defineProperty(data, key, {
// ... 省略
set: function(newVal) {
if (val === newVal) return;
console.log('哈哈哈,监听到值变化了 ', val, ' --> ', newVal);
val = newVal;
dep.notify(); // 通知所有订阅者
}
});
} function Dep() {
this.subs = [];
}
Dep.prototype = {
addSub: function(sub) {
this.subs.push(sub);
},
notify: function() {
this.subs.forEach(function(sub) {
sub.update();
});
}
};

  

那么问题来了,谁是订阅者?怎么往订阅器添加订阅者?
没错,上面的思路整理中我们已经明确订阅者应该是Watcher, 而且var dep = new Dep();是在 defineReactive方法内部定义的,所以想通过dep添加订阅者,就必须要在闭包内操作,所以我们可以在 getter里面动手脚:

// Observer.js
// ...省略
Object.defineProperty(data, key, {
get: function() {
// 由于需要在闭包内添加watcher,所以通过Dep定义一个全局target属性,暂存watcher, 添加完移除
Dep.target && dep.addDep(Dep.target);
return val;
}
// ... 省略
}); // Watcher.js
Watcher.prototype = {
get: function(key) {
Dep.target = this;
this.value = data[key]; // 这里会触发属性的getter,从而添加订阅者
Dep.target = null;
}
}

  

这里已经实现了一个Observer了,已经具备了监听数据和数据变化通知订阅者的功能 完整代码 那么接下来就是实现Compile了
 
2、实现Compile
 
compile主要做的事情是解析模板指令,将模板中的变量替换成数据,然后初始化渲染页面视图,并将每个指令对应的节点绑定更新函数,添加监听数据的订阅者,一旦数据有变动,收到通知,更新视图,如图所示:
 
因为遍历解析的过程有多次操作dom节点,为提高性能和效率,会先将跟节点el转换成文档碎片fragment进行解析编译操作,解析完成,再将fragment添加回原来的真实dom节点中
 
function Compile(el) {
this.$el = this.isElementNode(el) ? el : document.querySelector(el);
if (this.$el) {
this.$fragment = this.node2Fragment(this.$el);
this.init();
this.$el.appendChild(this.$fragment);
}
}
Compile.prototype = {
init: function() { this.compileElement(this.$fragment); },
node2Fragment: function(el) {
var fragment = document.createDocumentFragment(), child;
// 将原生节点拷贝到fragment
while (child = el.firstChild) {
fragment.appendChild(child);
}
return fragment;
}
};

  

compileElement方法将遍历所有节点及其子节点,进行扫描解析编译,调用对应的指令渲染函数进行数据渲染,并调用对应的指令更新函数进行绑定,详看代码及注释说明:

Compile.prototype = {
// ... 省略
compileElement: function(el) {
var childNodes = el.childNodes, me = this;
[].slice.call(childNodes).forEach(function(node) {
var text = node.textContent;
var reg = /\{\{(.*)\}\}/; // 表达式文本
// 按元素节点方式编译
if (me.isElementNode(node)) {
me.compile(node);
} else if (me.isTextNode(node) && reg.test(text)) {
me.compileText(node, RegExp.$1);
}
// 遍历编译子节点
if (node.childNodes && node.childNodes.length) {
me.compileElement(node);
}
});
},
compile: function(node) {
var nodeAttrs = node.attributes, me = this;
[].slice.call(nodeAttrs).forEach(function(attr) {
// 规定:指令以 v-xxx 命名
// 如 <span v-text="content"></span> 中指令为 v-text
var attrName = attr.name; // v-text
if (me.isDirective(attrName)) {
var exp = attr.value; // content
var dir = attrName.substring(2); // text
if (me.isEventDirective(dir)) {
// 事件指令, 如 v-on:click
compileUtil.eventHandler(node, me.$vm, exp, dir);
} else {
// 普通指令
compileUtil[dir] && compileUtil[dir](node, me.$vm, exp);
}
}
});
}
}; // 指令处理集合
var compileUtil = {
text: function(node, vm, exp) {
this.bind(node, vm, exp, 'text');
},
// ...省略
bind: function(node, vm, exp, dir) {
var updaterFn = updater[dir + 'Updater'];
// 第一次初始化视图
updaterFn && updaterFn(node, vm[exp]);
// 实例化订阅者,此操作会在对应的属性消息订阅器中添加了该订阅者watcher
new Watcher(vm, exp, function(value, oldValue) {
// 一旦属性值有变化,会收到通知执行此更新函数,更新视图
updaterFn && updaterFn(node, value, oldValue);
});
}
}; // 更新函数
var updater = {
textUpdater: function(node, value) {
node.textContent = typeof value == 'undefined' ? '' : value;
}
// ...省略
};

  

这里通过递归遍历保证了每个节点及子节点都会解析编译到,包括了{{}}表达式声明的文本节点。指令的声明规定是通过特定前缀的节点属性来标记,如<span v-text="content" other-attr中v-text便是指令,而other-attr不是指令,只是普通的属性。
监听数据、绑定更新函数的处理是在compileUtil.bind()这个方法中,通过new Watcher()添加回调来接收数据变化的通知
 
至此,一个简单的Compile就完成了,完整代码。接下来要看看Watcher这个订阅者的具体实现了
 
3、实现Watcher
Watcher订阅者作为Observer和Compile之间通信的桥梁,主要做的事情是:
1、在自身实例化时往属性订阅器(dep)里面添加自己
2、自身必须有一个update()方法
3、待属性变动dep.notice()通知时,能调用自身的update()方法,并触发Compile中绑定的回调,则功成身退。
如果有点乱,可以回顾下前面的思路整理

function Watcher(vm, exp, cb) {
this.cb = cb;
this.vm = vm;
this.exp = exp;
// 此处为了触发属性的getter,从而在dep添加自己,结合Observer更易理解
this.value = this.get();
}
Watcher.prototype = {
update: function() {
this.run(); // 属性值变化收到通知
},
run: function() {
var value = this.get(); // 取到最新值
var oldVal = this.value;
if (value !== oldVal) {
this.value = value;
this.cb.call(this.vm, value, oldVal); // 执行Compile中绑定的回调,更新视图
}
},
get: function() {
Dep.target = this; // 将当前订阅者指向自己
var value = this.vm[exp]; // 触发getter,添加自己到属性订阅器中
Dep.target = null; // 添加完毕,重置
return value;
}
};
// 这里再次列出Observer和Dep,方便理解
Object.defineProperty(data, key, {
get: function() {
// 由于需要在闭包内添加watcher,所以可以在Dep定义一个全局target属性,暂存watcher, 添加完移除
Dep.target && dep.addDep(Dep.target);
return val;
}
// ... 省略
});
Dep.prototype = {
notify: function() {
this.subs.forEach(function(sub) {
sub.update(); // 调用订阅者的update方法,通知变化
});
}
};

  

实例化Watcher的时候,调用get()方法,通过Dep.target = watcherInstance标记订阅者是当前watcher实例,强行触发属性定义的getter方法,getter方法执行的时候,就会在属性的订阅器dep添加当前watcher实例,从而在属性值有变化的时候,watcherInstance就能收到更新通知。
 
ok, Watcher也已经实现了,完整代码
基本上vue中数据绑定相关比较核心的几个模块也是这几个,猛戳这里  在src 目录可找到vue源码。
 
最后来讲讲MVVM入口文件的相关逻辑和实现吧,相对就比较简单了~
 
4、实现MVVM
MVVM作为数据绑定的入口,整合Observer、Compile和Watcher三者,通过Observer来监听自己的model数据变化,通过Compile来解析编译模板指令,最终利用Watcher搭起Observer和Compile之间的通信桥梁,达到数据变化 -> 视图更新;视图交互变化(input) -> 数据model变更的双向绑定效果。
 
一个简单的MVVM构造器是这样子:

 
function MVVM(options) {
this.$options = options;
var data = this._data = this.$options.data;
observe(data, this);
this.$compile = new Compile(options.el || document.body, this)
}

  

但是这里有个问题,从代码中可看出监听的数据对象是options.data,每次需要更新视图,则必须通过var vm = new MVVM({data:{name: 'zhimeng'}}); vm._data.name = 'zhimeng520'; 这样的方式来改变数据。
 
显然不符合我们一开始的期望,我们所期望的调用方式应该是这样的:
 
var vm = new MVVM({data: {name: 'zhimeng'}}); vm.name = 'zhimeng520';

  

所以这里需要给MVVM实例添加一个属性代理的方法,使访问vm的属性代理为访问vm._data的属性,改造后的代码如下:

function MVVM(options) {
this.$options = options;
var data = this._data = this.$options.data, me = this;
// 属性代理,实现 vm.xxx -> vm._data.xxx
Object.keys(data).forEach(function(key) {
me._proxy(key);
});
observe(data, this);
this.$compile = new Compile(options.el || document.body, this)
} MVVM.prototype = {
_proxy: function(key) {
var me = this;
Object.defineProperty(me, key, {
configurable: false,
enumerable: true,
get: function proxyGetter() {
return me._data[key];
},
set: function proxySetter(newVal) {
me._data[key] = newVal;
}
});
}
};

  

要围绕“几种实现双向绑定的做法”、“实现Observer”、“实现Compile”、“实现Watcher”、“实现MVVM”这几个模块来阐述了双向绑定的原理和实现。并根据思路流程渐进梳理讲解了一些细节思路和比较关键的内容点,以及通过展示部分关键代码讲述了怎样一步步实现一个双向绑定MVVM。
 
 
 
 
 
 
 
 
 

Vue底层实现原理总结的更多相关文章

  1. vue 实现数据绑定原理

      案例: Vue 底层原理   // 目的: 使用原生js来实现Vue深入响应式   var box = document.querySelector('.box')   var button = ...

  2. 深入解析vue响应式原理

    摘要:本文主要通过结合vue官方文档及源码,对vue响应式原理进行深入分析. 1.定义 作为vue最独特的特性,响应式可以说是vue的灵魂了,表面上看就是数据发生变化后,对应的界面会重新渲染,那么响应 ...

  3. PHP底层工作原理

    最近搭建服务器,突然感觉lamp之间到底是怎么工作的,或者是怎么联系起来?平时只是写程序,重来没有思考过他们之间的工作原理: PHP底层工作原理 图1 php结构 从图上可以看出,php从下到上是一个 ...

  4. Java并发之底层实现原理学习笔记

    本篇博文将介绍java并发底层的实现原理,我们知道java实现的并发操作最后肯定是由我们的CPU完成的,中间经历了将java源码编译成.class文件,然后进行加载,然后虚拟机执行引擎进行执行,解释为 ...

  5. spirng底层实现原理

    什么是框架?框架解决的是什么问题? 编程有一个准则,Don't Repeat Yourself(不要重复你的代码),所以我们会将重复的代码抽取出来,封装到方法中:如果封装的方法过多,将将这些方法封装成 ...

  6. iOS weak底层实现原理

    今年年底做了很多决定,离开工作三年的深圳,来到了上海,发现深圳和上海在苹果这方面还是差距有点大的,上海的市场8成使用swift编程,而深圳8成的使用OC,这点还是比较让准备来上海打拼的苹果工程师有点小 ...

  7. Vue双向绑定原理,教你一步一步实现双向绑定

    当今前端天下以 Angular.React.vue 三足鼎立的局面,你不选择一个阵营基本上无法立足于前端,甚至是两个或者三个阵营都要选择,大势所趋. 所以我们要时刻保持好奇心,拥抱变化,只有在不断的变 ...

  8. 《Java并发编程的艺术》Java并发机制的底层实现原理(二)

    Java并发机制的底层实现原理 1.volatile volatile相当于轻量级的synchronized,在并发编程中保证数据的可见性,使用 valotile 修饰的变量,其内存模型会增加一个 L ...

  9. Spring(二)IOC底层实现原理

    IOC原理 将对象创建交给Spring去管理. 实现IOC的两种方式 IOC配置文件的方式 IOC注解的方式 IOC底层实现原理 底层实现使用的技术 1.1 xml配置文件 1.2 dom4j解析xm ...

随机推荐

  1. nyoj 17-单调递增最长子序列 && poj 2533(动态规划,演算法)

    17-单调递增最长子序列 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:21 submit:49 题目描述: 求一个字符串的最长递增子序列的长度 如 ...

  2. 力扣(LeetCode)键盘行 个人题解

    给定一个单词列表,只返回可以使用在键盘同一行的字母打印出来的单词.键盘如下图所示. 示例: 输入: ["Hello", "Alaska", "Dad& ...

  3. PHP文件上传和下载

    第 1 章 文件上传 1.1 客户端上传设置 在 B/S 程序中文件上传已经成为一个常用功能.其目的是客户可以通过浏览器 (Browser) 将文件上传到服务器(Server)上的指定目录. 网络上常 ...

  4. java版单例模式

    单例模式可以说是最常用的设计模式之一,其主要作用就是保证一个类只有一个实例,并且提供一个访问它的全局访问点,严格的控制用户的访问方式. 单例模式又分为懒汉模式和饿汉模式,首先说一下饿汉模式: 饿汉模式 ...

  5. PHP创建对象的6种方式

    创建对象实例: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ...

  6. node后台初始配置(2)

    一.node-app结构 创建成功node-app项目后,会自动生成一些文件一般初始的结构如下图 在bin文件夹里面只有一个文件www      var port = normalizePort(pr ...

  7. HTTPS 原理分析——带着疑问层层深入

    HTTPS 随着 HTTPS 建站的成本下降,现在大部分的网站都已经开始用上 HTTPS 协议.大家都知道 HTTPS 比 HTTP 安全,也听说过与 HTTPS 协议相关的概念有 SSL .非对称加 ...

  8. 新闻实时分析系统Hive与HBase集成进行数据分析 Cloudera HUE大数据可视化分析

    1.Hue 概述及版本下载 1)概述 Hue是一个开源的Apache Hadoop UI系统,最早是由Cloudera Desktop演化而来,由Cloudera贡献给开源社区,它是基于Python ...

  9. Leetcode_01【两数之和】

    文章目录:  题目 脚本一及注释 脚本逻辑 脚本二及注释 脚本逻辑 题目: 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. ...

  10. 第二章 Unity Shader基础

    [TOC] 1. Unity Shader 的基础: ShaderLab 学习和编写着色器的过程一直是一个学习曲线很陡峭的过程,通常情况下为了自定义渲染效果往往要和很多文件和设置打交道,这些设置很容易 ...