import numpy as np
import pandas as pd

认识

A pivot table is a data summarization tool(数据汇总工具) frequently found in spreadsheet programs and other data analysis software(广泛应用于数据分析中). It aggregates a table of data by one or more keys, arranging the data in a rectangle(矩形) with some of the group keys along the rows and some along the columns.

Pivot tables in Python with pandas are made possible through the groupby facility(促进) described in this chapter combined with reshape operations utilizing hierarchical indexing.

DataFrame has a pivot_table method, and there is also a top-level pandas.pivot_table function. In addition to providing a convenience interface to groupby, pivot_table can add partial totals , also known as margins.

Returning to the tipping dataset, suppose you wanted to compute a table of group means(the default pivot_table aggregation type) arranged by day and smoker on the rows: (对分组计算组内平均)

tips = pd.read_csv('../examples/tips.csv')

"新增一列 tip_pct"

tips['tip_pct'] = tips['tip'] / tips['total_bill']

tips[:6]
'新增一列 tip_pct'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
total_bill tip smoker day time size tip_pct
0 16.99 1.01 No Sun Dinner 2 0.059447
1 10.34 1.66 No Sun Dinner 3 0.160542
2 21.01 3.50 No Sun Dinner 3 0.166587
3 23.68 3.31 No Sun Dinner 2 0.139780
4 24.59 3.61 No Sun Dinner 4 0.146808
5 25.29 4.71 No Sun Dinner 4 0.186240
"默认的aggregation 是 mean"
tips.pivot_table(index=['day', 'smoker'])
'默认的aggregation 是 mean'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
size tip tip_pct total_bill
day smoker
Fri No 2.250000 2.812500 0.151650 18.420000
Yes 2.066667 2.714000 0.174783 16.813333
Sat No 2.555556 3.102889 0.158048 19.661778
Yes 2.476190 2.875476 0.147906 21.276667
Sun No 2.929825 3.167895 0.160113 20.506667
Yes 2.578947 3.516842 0.187250 24.120000
Thur No 2.488889 2.673778 0.160298 17.113111
Yes 2.352941 3.030000 0.163863 19.190588

This could have been produced with groupby directly. Now, suppose we want to aggregate only tip_pct and size, and additionally group by time. I'll put smoker in the table columns and day in the rows:

tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
columns='smoker')

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead tr th {
text-align: left;
} .dataframe thead tr:last-of-type th {
text-align: right;
}
size tip_pct
smoker No Yes No Yes
time day
Dinner Fri 2.000000 2.222222 0.139622 0.165347
Sat 2.555556 2.476190 0.158048 0.147906
Sun 2.929825 2.578947 0.160113 0.187250
Thur 2.000000 NaN 0.159744 NaN
Lunch Fri 3.000000 1.833333 0.187735 0.188937
Thur 2.500000 2.352941 0.160311 0.163863

We could augment this table to include partial totals by passing margins=True. This has the effect of adding all row and column labels, with corresponding values being the group statistics for all the data within a single tier:

tips.pivot_table(['tip_pct', 'size'], index=['time', 'day'],
columns='smoker', margins=True)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead tr th {
text-align: left;
} .dataframe thead tr:last-of-type th {
text-align: right;
}
size tip_pct
smoker No Yes All No Yes All
time day
Dinner Fri 2.000000 2.222222 2.166667 0.139622 0.165347 0.158916
Sat 2.555556 2.476190 2.517241 0.158048 0.147906 0.153152
Sun 2.929825 2.578947 2.842105 0.160113 0.187250 0.166897
Thur 2.000000 NaN 2.000000 0.159744 NaN 0.159744
Lunch Fri 3.000000 1.833333 2.000000 0.187735 0.188937 0.188765
Thur 2.500000 2.352941 2.459016 0.160311 0.163863 0.161301
All 2.668874 2.408602 2.569672 0.159328 0.163196 0.160803

Here, the All values are means without taking into account smoker versus non-smoker or any of the two levels of grouping on the rows.

To use a different aggregation function, pass it to aggfunc. For example, count or len will give you a cross-tabulation of group sizes:

tips.pivot_table('tip_pct', index=['time', 'smoker'],
columns='day', aggfunc=len, margins=True)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
day Fri Sat Sun Thur All
time smoker
Dinner No 3.0 45.0 57.0 1.0 106.0
Yes 9.0 42.0 19.0 NaN 70.0
Lunch No 1.0 NaN NaN 44.0 45.0
Yes 6.0 NaN NaN 17.0 23.0
All 19.0 87.0 76.0 62.0 244.0

If some combinations are empty, you may wish to pass a fill_value

tips.pivot_table('tip_pct', index=['time', 'size', 'smoker'],
columns='day', aggfunc='mean', fill_value=0)

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
day Fri Sat Sun Thur
time size smoker
Dinner 1 No 0.000000 0.137931 0.000000 0.000000
Yes 0.000000 0.325733 0.000000 0.000000
2 No 0.139622 0.162705 0.168859 0.159744
Yes 0.171297 0.148668 0.207893 0.000000
3 No 0.000000 0.154661 0.152663 0.000000
Yes 0.000000 0.144995 0.152660 0.000000
4 No 0.000000 0.150096 0.148143 0.000000
Yes 0.117750 0.124515 0.193370 0.000000
5 No 0.000000 0.000000 0.206928 0.000000
Yes 0.000000 0.106572 0.065660 0.000000
6 No 0.000000 0.000000 0.103799 0.000000
Lunch 1 No 0.000000 0.000000 0.000000 0.181728
Yes 0.223776 0.000000 0.000000 0.000000
2 No 0.000000 0.000000 0.000000 0.166005
Yes 0.181969 0.000000 0.000000 0.158843
3 No 0.187735 0.000000 0.000000 0.084246
Yes 0.000000 0.000000 0.000000 0.204952
4 No 0.000000 0.000000 0.000000 0.138919
Yes 0.000000 0.000000 0.000000 0.155410
5 No 0.000000 0.000000 0.000000 0.121389
6 No 0.000000 0.000000 0.000000 0.173706

See Table 10-2 for a summary of pivot_table methods.

function anme Description
values Column name or names to aggregate; 默认聚合所有的数值列
index Column names or other group keys to group on the rows of the resulting pivot table
columns Column names or other group keys to group on the columns of the result pivot table
aggfunc Aggregation function or list of function(默认是mean); can be any function valid in a groupby context
fill_value Replace missing values in result table
dropna If True, do not include columns whose entries are all NA
margins Add row/column subtotals and grand total

交叉表: Crosstab

  • 是透视表的一部分, aggfunc=count而已

    A cross-tabulation (or crosstab for short) is a special case of a pivot table that computes group frequencies.Here is an example:

As part of some survey analysis, we might want to summarize this data nationality and handedness. You could use pivot_table to do this, but the pandas.crosstab function can be more convenient:

pd.crosstab(data.Nationality, data.Handedness, margins=True)

The first two arguments to crosstab can each either be an array or Series or a list of arrays. As in the tips data:

"根据 day, time 对 smoker 进行统计"
pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)
'根据 day, time 对 smoker 进行统计'

.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}

.dataframe tbody tr th {
vertical-align: top;
} .dataframe thead th {
text-align: right;
}
smoker No Yes All
time day
Dinner Fri 3 9 12
Sat 45 42 87
Sun 57 19 76
Thur 1 0 1
Lunch Fri 1 6 7
Thur 44 17 61
All 151 93 244

小结

Mastering pandas's data grouping tools can help both with data cleaning as well as modeling or statistical analysis work.

(熟练掌握 groupby 对 数据清洗, 建模统计等都是有认识和实操方面的帮助的.)

pandas 之 交叉表-透视表的更多相关文章

  1. pandas-10 pd.pivot_table()透视表功能

    pandas-10 pd.pivot_table()透视表功能 和excel一样,pandas也有一个透视表的功能,具体demo如下: import numpy as np import pandas ...

  2. Pandas透视表和交叉表

    透视表 参数名 说明 values 待聚合的列的名称.默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列表或其他分组键,出现在结果透视表的列 ...

  3. pandas交叉表和透视表及案例分析

    一.交叉表: 作用: 交叉表是一种用于计算分组频率的特殊透视图,对数据进行汇总 考察预测数据和正式数据的对比情况,一个作为行,一个作为列 案例: 医院预测病人病情: 真实病情如下数组(B:有病,M:没 ...

  4. 04. Pandas 3| 数值计算与统计、合并连接去重分组透视表文件读取

    1.数值计算和统计基础 常用数学.统计方法 数值计算和统计基础 基本参数:axis.skipna df.mean(axis=1,skipna=False)  -->> axis=1是按行来 ...

  5. pandas_使用透视表与交叉表查看业绩汇总数据

    # 使用透视表与交叉表查看业绩汇总数据 import pandas as pd import numpy as np import copy # 设置列对齐 pd.set_option("d ...

  6. 【转载】使用Pandas创建数据透视表

    使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...

  7. Pandas透视表(pivot_table)详解

    介绍 也许大多数人都有在Excel中使用数据透视表的经历,其实Pandas也提供了一个类似的功能,名为pivot_table.虽然pivot_table非常有用,但是我发现为了格式化输出我所需要的内容 ...

  8. pandas实现excel中的数据透视表和Vlookup函数功能

    在孩子王实习中做的一个小工作,方便整理数据. 目前这几行代码是实现了一个数据透视表和匹配的功能,但是将做好的结果写入了不同的excel中, 如何实现将结果连续保存到同一个Excel的同一个工作表中?还 ...

  9. python pandas使用数据透视表

    1) 官网啰嗦这一堆, pandas.pivot_table函数中包含四个主要的变量,以及一些可选择使用的参数.四个主要的变量分别是数据源data,行索引index,列columns,和数值value ...

随机推荐

  1. react相关小技巧

    一.我们在项目中切换路由的时候可能会遇到 Warning: setState(...): Can only update a mounted or mounting component. This u ...

  2. 3.Python网络编程_多任务问题抛出

    #单线程程序 import time def sing(): """唱歌5秒钟""" for i in range(5): print(&q ...

  3. ffmpeg下载m3u8流媒体

    安装 编译好的windows可用版本的下载地址(官网中可以连接到这个网站,和官方网站保持同步): http://ffmpeg.zeranoe.com/builds/ 该版本为FFMPEG的Static ...

  4. MongoDB高级知识(六)

    1. document的关系 多个文档之间在逻辑上可以相互联系,可以通过嵌入和引用来建立联系. 文档之间的关系可以有: 1对1 1对多 多对1 多对多 一个用户可以有多个地址,所以是一对多的关系. # ...

  5. 解决angular单页面页面底部跳转到新页面滚动条不在顶部的问题

    以上jquery,下面js this.router.events.subscribe((event) => { document.body.scrollTop=0; }); 另一种写法 impo ...

  6. Java 未来行情到底如何,来看看各界人士是怎么说的

    这是黄小斜的第102篇文章 作者 l 黄小斜 来源 l 公众号[程序员黄小斜](ID:AntCoder) 转载请联系作者(wx_ID:john_josh) Java从出生到现在已经走过了 20 多个年 ...

  7. cURL error 60: SSL certificate problem: unable to get local issuer certificate(转)【亲测】

    php5.6以上的版本会出现这种问题 解决办法: [开启拓展] extension=curl extension=openssl [配置证书] 访问https://curl.haxx.se/docs/ ...

  8. cocos2dx 3.17(Windows下) 接入skynet和sprotol

    大致流程一致,但是他的github上的版本,没有Windows的版本.打开他的win的工程会提示缺少一个模块. 本人环境 cocos2dx 3.17.1 当前最新 skynet-无视-当前最新 VS2 ...

  9. 物联网架构成长之路(37)-基于C#开发串口工具

    0. 前言 作为物联网平台开发,最基础的工具链还是要有的.前几篇博客,介绍了用C#开发一个MQTT的客户端,用于模拟设备连接平台,并发送数据到平台.但是对于一些硬件来说,可能会用到串口uart来发送数 ...

  10. LeetCode 841:钥匙和房间 Keys and Rooms

    题目: ​ 有 N 个房间,开始时你位于 0 号房间.每个房间有不同的号码:0,1,2,...,N-1,并且房间里可能有一些钥匙能使你进入下一个房间. ​ 在形式上,对于每个房间 i 都有一个钥匙列表 ...