Cauchy-Binet公式的证明 及 对Denton et al. (2019)的个人注(1)
------------恢复内容开始------------
据新闻报道数学天才陶哲轩和3个物理学家研究出一个只用特征值就可以计算矩阵特征向量的公式, 我感觉很有趣, 这应该能够应用在很多领域中, 所以仔细研究了一波。研究公式耗费了我大半天, 我把所有的equation都推导了一遍, 也给出了一些我的看法, 现在把它们总结出来, 方便后人参考. 我给出了Cauchy-Binet公式(原文引理1)的更广义形式及其怎么过程, 对该公式取特殊条件即可证明引理2.(该引理就是全文的主要结论). 不过相比之下, 还是陶哲轩对于引理2得证明更简洁, 虽然没有用到引理1。
我的证明有些地方可能不严谨, 欢迎读者批评指正。
----司徒鲜生- 2019年@上海天文台
参考(文献)
新闻报道(微信): 3个搞物理的颠覆了数学常识, 数学天才陶哲轩: 我开始压根不相信

参考(文献)
1.说明

2.化简的方法
3. 特征分解的方法

4. 联立可得

5. 特殊情况1

6. 特殊情况2

7. 特殊情况3

8. 特殊情况4

9. 解释及备注

10. 特征向量归一化的验证

Cauchy-Binet公式的证明 及 对Denton et al. (2019)的个人注(1)的更多相关文章
- 一个形式较精细的Strling公式的证明
近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种: Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e} ...
- 关于后缀间$LCP$的一些公式的证明
目录 关于\(LCP\)有如下两个公式: \(LCP~Lemma\) 的证明: \(LCP~Theorem\) 的证明: 关于\(LCP\)有如下两个公式: \(LCP~Lemma:\) 对任意 \( ...
- RSA算法原理——(3)RSA加解密过程及公式论证
上期(RSA简介及基础数论知识)为大家介绍了:互质.欧拉函数.欧拉定理.模反元素 这四个数论的知识点,而这四个知识点是理解RSA加密算法的基石,忘了的同学可以快速的回顾一遍. 一.目前常见加密算法简介 ...
- 狄利克雷卷积&莫比乌斯反演证明
狄利克雷卷积简介 卷积这名字听起来挺学究的,今天学了之后发现其实挺朴实hhh. 卷积: "(n)"表示到n的一个范围. 设\(f,g\)是两个数论函数(也就是说,以自然数集为定义域 ...
- 用积分方法求K次方和数列公式
这是我很早以前在高中时发现的一个通用计算K次方和数列公式的方法,很特别的地方是用了微积分中的积分方法.目前我还没有发现有谁提出和我一样的方法,如果哪位读者有相关发现,麻烦告知我. 大家很多人都知道高斯 ...
- 数学算法(一):快速求斐波那契数第n项通过黄金分割率公式
有一个固定的数学公式= =,不知道的话显然没法应用 首先黄金分割率接近于这个公式, (以下为黄金分割率与斐波那契的关系,可跳过) 通过斐波那契数列公式 两边同时除以 得: (1) 注意后一项比前一项接 ...
- 【转】【关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明】【指数循环节】
[关于 A^x = A^(x % Phi(C) + Phi(C)) (mod C) 的若干证明][指数循环节] 原文地址:http://hi.baidu.com/aekdycoin/item/e493 ...
- 数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...
- office2007/2010/2013输入公式的正确方式
博客中的文章均为 meelo 原创,请务必以链接形式注明本文地址 理工科的学生,写报告.写论文那面需要输入公式,过去大家常用的公式编辑器是mathtype,虽然功能强大,但输入极为不方便,输入个指数. ...
随机推荐
- Springboot】Springboot整合邮件服务(HTML/附件/模板-QQ、网易)
介绍 邮件服务是常用的服务之一,作用很多,对外可以给用户发送活动.营销广告等:对内可以发送系统监控报告与告警. 本文将介绍Springboot如何整合邮件服务,并给出不同邮件服务商的整合配置. 如图所 ...
- Map集合(双列集合)
Map集合(双列集合)Map集合是键值对集合. 它的元素是由两个值组成的,元素的格式是:key=value. Map集合形式:{key1=value1 , key2=value2 , key3=val ...
- 动态扩容lvm逻辑卷的操作记录
在进行动态扩容LVM逻辑卷的之前,先看这篇文章:https://www.cnblogs.com/huhyoung/p/9689776.html.以下是我实操记录. 在上班期间,测试经理突然找我,能不能 ...
- 最简单的ArcGIS Engine应用程序(上)
名词: IWorkspaceFactory 工作空间工厂 ShapeFileWorksapceFactory 矢量文件工作空间工厂 IWorkspce 工作空间 IFeatrueWorkspace 要 ...
- vc++中输入表的免杀
国外的杀毒软件一般会把特征码定位在PE文件的输入表函数(也就是源码里我们调用了的API函数)上, 我们对付这种查杀的方法就是在源码里对API函数进行动态调用,对一个函数动态调用之后,本来以输入 表函数 ...
- 利用git工具将自己的代码文件上传到Github
GitHub 是一个面向开源及私有软件项目的托管平台,作为开源代码库以及版本控制系统,Github拥有超过900万开发者用户.随着越来越多的应用程序转移到了云上,Github已经成为了管理软件开发以及 ...
- 多种方式实现AOP
一.使用代理工厂完成声明式增强 1.创建业务接口 public interface IdoSomeService { public void doSomething(); } 2.创建接口实现类 pu ...
- kali更新源地址更改
问题: Hit:1 http://mirrors.ustc.edu.cn/kali kali-rolling InReleaseIgn:2 http://mirrors.ustc.edu.cn/kal ...
- vscode发博客插件更新v0.1.0(可能会相对好用点吧)
距离上一次编写这个vscode在博客园发博客的插件已经过去好久了,那个时候vscode插件的功能也没有那么强大,期间有人提出问题来,也有人提出建议来,我一直没有抽出时间来维护,深感抱歉,直到有人加到我 ...
- Mysql数据库(九)备份与恢复
一.数据备份 1.使用mysqldmp命令备份 (1)备份一个数据库 mysqldump -u root -p dbname table1 table2 ... > D:\BackName.sq ...
