------------恢复内容开始------------

 # -*- coding: utf-8 -*-
"""
Created on Thu Nov 14 19:29:08 2019 @author: HTING
""" # 导入科学计算包模块
import numpy as np # 导入运算符模块
import operator # =============================================================================
# # 导入 os 模块
# import os
# ============================================================================= # 创建数据集和标签
def createDataSet():
group = np.array([[1.0, 1.1],
[1.0, 1.0],
[0, 0],
[0, 0.1]])
labels = ('A', 'A', 'B', 'B') return group, labels ''' Parameters: inX - 用于分类的数据(测试集)
dataSet - 用于训练的数据(训练集)
labes - 训练数据集的label
k - 选择距离最小的k个点 return: sortedClassCount[0][0] - 输入数据的预测分类 ''' # k-近邻算法 def classify0(inX, k): # import dataSet, labels
dataSet, labels = createDataSet() # 计算距离
# A.shape[i] : 第i维的长度
dataSetSize = dataSet.shape[0] # 用tile将输入向量复制成和数据集一样大的矩阵
'''
np.tile(A, reps) :
数组A重复一定次数获得新数组;
A - array, list, tuple, dict, matrix
以及基本数据类型int, string, float以及bool类型;
reps - tuple,list, dict, array, int, bool.
但不可以是float, string, matrix类型; np.tile(A,(m,n)):
数组A重复n次 --> nA; # A重复n次
nA --> m[nA]. # m 维的nA
'''
diffMat = np.tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat ** 2 '''
In Numpy dimensions are called axes.
The number of axes is rank. '''
sqDistances = sqDiffMat.sum(axis=1)
# sqDistances = np.sum(sqDiffMat, axis=1) distances = sqDistances ** 0.5 # 按距离从小到大排序,并返回相应的索引位置
# A.argsort()[]
sortedDistIndicies = distances.argsort() # 创建一个字典,存储标签和出现次数
classCount = {} # 选择距离最小的k个点
for i in range(k):
'''
for i in range(m,n,z) | range(start, stop, step)
i <--> m -> n-1, step = z;
default: m = 0, z = 1
'''
# 查找样本的标签类型
voteIlabel = labels[sortedDistIndicies[i]] # 在字典中给找到的样本标签类型+1
'''
若不存在voteIlabel,
则字典classCount中生成voteIlabel元素,并使其对应的数字为0 :
: classCount = {voteIlabel:0}
此时classCount.get(voteIlabel,0)作用是检测并生成新元素,括号中的0只用作初始化,之后再无作用;
当字典中有voteIlabel元素时,
classCount.get(voteIlabel,0)作用是返回该元素对应的值
'''
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 # 排序并返回出现次数最多的标签类型
'''
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list
cmp -- accept function;
key -- accept one element of one function, which is function return ,
the weight to sort;
reverse -- True -> positive order;
False -> negative order; operator.itemgetter()
用于获取对象的哪些维的数据,参数为一些序号。
注,operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。
'''
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] 129
130
 

Machine Learning in Action ---- kNN的更多相关文章

  1. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  2. Machine Learning In Action 第二章学习笔记: kNN算法

    本文主要记录<Machine Learning In Action>中第二章的内容.书中以两个具体实例来介绍kNN(k nearest neighbors),分别是: 约会对象预测 手写数 ...

  3. 学习笔记之机器学习实战 (Machine Learning in Action)

    机器学习实战 (豆瓣) https://book.douban.com/subject/24703171/ 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中 ...

  4. 《Machine Learning in Action》—— 懂的都懂,不懂的也能懂。非线性支持向量机

    说在前面:前几天,公众号不是给大家推送了第二篇关于决策树的文章嘛.阅读过的读者应该会发现,在最后排版已经有点乱套了.真的很抱歉,也不知道咋回事,到了后期Markdown格式文件的内容就解析出现问题了, ...

  5. 《Machine Learning in Action》—— 白话贝叶斯,“恰瓜群众”应该恰好瓜还是恰坏瓜

    <Machine Learning in Action>-- 白话贝叶斯,"恰瓜群众"应该恰好瓜还是恰坏瓜 概率论,可以说是在机器学习当中扮演了一个非常重要的角色了.T ...

  6. 《Machine Learning in Action》—— 浅谈线性回归的那些事

    <Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...

  7. 《Machine Learning in Action》—— Taoye给你讲讲Logistic回归是咋回事

    在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕 ...

  8. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...

  9. 【机器学习实战】Machine Learning in Action 代码 视频 项目案例

    MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apa ...

随机推荐

  1. Java的数组的作业11月06日

    动手动脑 实验一:了解for循环得到棋盘结构 (1) 程序: import java.io.*; public class QiPan { //定义一个二维数组来充当棋盘 private String ...

  2. Vue成员获取

    0828自我总结 Vue成员获取 一.vue中data的获取 1.获取data里面的某个变量 $data.msg也可以简写成msg 2.获取data全部内容 $data 二.获取vue中vue挂钩的对 ...

  3. PHP绕过disable_function限制(一)

    测试环境 php 5.4.5 0x01 利用系统组件绕过 1.window com组件(php 5.4)(高版本扩展要自己添加) (COM组件它最早的设计意图是,跨语言实现程序组件的复用.) 测试: ...

  4. How to Compute The Derivatives (如何求导数)(TBC)

    A video by 3Blue1Brown in Bilibili\text{A video by 3Blue1Brown in Bilibili}A video by 3Blue1Brown in ...

  5. if循环判断

    if循环判断 if-else循环的语法格式 if 逻辑判断句: ​ 代码块 # 缩进表示所属关系 else 逻辑判断句: ​ 代码块 if 和elif同时使用来做多层判断 if 逻辑判断式: 代码块 ...

  6. 安装并使用SourceTree进行代码管理(Mac环境)

    应用场景 对于我们开发人员来说,熟练使用Git是最基本的技能之一.SourceTree又是一款比较好的Git UI工具,是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端,主要 ...

  7. 本月16日SpringBoot2.2发布,有哪些变化先知晓

    本月(2019年10月16日)Spring Boot 2.2已经正式发布了!在此篇文章中,将给大家介绍一下2.2版为大家带来了哪些重要的新变化.笔者用心书写,希望阅读完成之后转发关注,你的支持是我不竭 ...

  8. 百万年薪python之路 -- 变量及if的练习

    1.简述变量命名规范 1.变量由数字,字母,下划线组成 2.不能以数字开头 3.不能使用python关键字 4.不能使用中文和拼音命名 5.区分大小写 6.变量名要具有描述性 7.推荐写法 7.1驼峰 ...

  9. 百万年薪python之路 -- 基础数据类型的补充练习

    1.看代码写结果 v1 = [1,2,3,4,5] v2 = [v1,v1,v1] v1.append(6) print(v1) print(v2) [1,2,3,4,5,6] [[1,2,3,4,5 ...

  10. 08 python学习笔记-随机生成大乐透号码(八)

    1 #产生大乐透号码 2 #前区 1-32,5 后区 1-12,2 3 #1.前区从1-32中级取5个,后区再从1-12里面取2个 4 #01 02 03 04 5 def dlt(): #生成随机大 ...