传送门:http://codeforces.com/contest/1153/problem/D

思路:

这道题想了一天,突发奇想,就是维护每个点两个值,第几大和第几小,就可以有传递性了。

#include <bits/stdc++.h>

using namespace std;

#define fi first
#define se second
#define pb push_back
typedef long long ll;
typedef pair<int, int> pii;
const ll inff = 0x3f3f3f3f3f3f3f3f;
const int inf = 0x3f3f3f3f; const int maxn = 3e5+;
int a[maxn];
vector<int>mp[maxn];
int dp[maxn][];
int all = ;
void dfs(int u, int fa) {
if(mp[u].size() == ) dp[u][] = dp[u][] = , all++;
else if(a[u] == ) dp[u][] = , dp[u][] = inf;
else if(a[u] == ) dp[u][] = inf, dp[u][] = ; for(int i=; i<mp[u].size(); i++) {
int v = mp[u][i];
if(v == fa) continue;
dfs(v, u); if(a[u] == ) {
dp[u][] = min(dp[v][], dp[u][]);
dp[u][] += dp[v][];
}
else {
dp[u][] += dp[v][];
dp[u][] = min(dp[v][], dp[v][]);
}
}
} int main(){
int n;
scanf("%d", &n);
for(int i=; i<=n; i++) scanf("%d", &a[i]);
for(int i=; i<=n; i++) {
int x; scanf("%d", &x);
mp[x].pb(i);
}
memset(dp, inf, sizeof(dp));
dfs(, );
// cout<<" dp[5][1] = " <<dp[5][1]<<endl;
// cout<<dp[1][0] << " , " << dp[1][1]<<endl;
printf("%d\n", max(dp[][], all - dp[][] + ));
return ;
}

CF 551 D.Serval and Rooted Tree 树形DP的更多相关文章

  1. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目:http://codeforces.com/contest/1153/problem/D 题意:给你一棵树,每个节点有一个操作,0代表取子节点中最小的那个值,1代表取子节点中最大的值,叶子节点的 ...

  2. cf-Round551-Div2-D. Serval and Rooted Tree(DP)

    题目链接:https://codeforces.com/contest/1153/problem/D 题意:有一棵树,给定结点数n,在每个结点上的操作(max:表示该结点的number为其孩子结点中的 ...

  3. CF1153D Serval and Rooted Tree

    题目地址:CF1153D Serval and Rooted Tree 挺好玩儿也挺考思维的一道题 思路:树形DP+贪心 数组 \(d\) 维护这样一个值: 对于一个节点 \(x\) ,它的值最大可以 ...

  4. D. Serval and Rooted Tree (樹狀DP)

    Codeforce 1153D Serval and Rooted Tree (樹狀DP) 今天我們來看看CF1153D 題目連結 題目 給一棵數,假設有$k$個葉節點,我們可以給葉節點分配$1$~$ ...

  5. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  6. Codeforces Round #551 (Div. 2) D. Serval and Rooted Tree (树形dp)

    题目链接 题意:给你一个有根树,假设有k个叶子节点,你可以给每个叶子节点编个号,要求编号不重复且在1-k以内.然后根据节点的max,minmax,minmax,min信息更新节点的值,要求根节点的值最 ...

  7. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  8. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  9. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

随机推荐

  1. 腾讯企业邮箱 POP3/SMTP 设置

    下午魅族MX2刷完机,原先配置的公司邮箱还要重新配置.有些地方需要改,找到了篇文章,如下: 腾讯企业邮箱支持通过客户端进行邮件管理.POP3/SMTP协议收发邮件服务器地址分别如下.接收邮件服务器:p ...

  2. python_0基础开始_day03

    第三节 一.整形和布尔值的转换 int整型 python3: 全部都是整型 python2: 整型,长整型long 十进制转换二进制 # 将十进制的168转换为二进制 ​#得出结果 将十进制的168转 ...

  3. CentOS7使用yum安装ceph rpm包

    1. 安装centos7对扩展repo的支持yum install yum-plugin-priorities保证下面的选项是开启的[main]enabled = 1 2. 安装 release.ke ...

  4. C# Quartz结合控制台实现定时任务

    前言: Quartz一个开源的作业调度框架,是OpenSymphony 的 Quartz API的.NET移植,基于C#写成,可应用于winform.asp.net.asp.net core应用中.提 ...

  5. 原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)

    1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Netwo ...

  6. Vue系列:Websocket 使用配置

    WebSocket 是什么? WebSocket  是一种网络通信协议.而且是在 HTML5 才开始提供的一种在单个 TCP 连接上进行全双工通讯的协议. 为什么需要 WebSocket ? 了解计算 ...

  7. 微服务与网关技术(SIA-GateWay)

    一.背景 软件架构,总是在不断的演进中... 把时间退回到二十年之前,当时企业级领域研发主要推崇的还是C/S模式,PB.Delphi这样的开发软件是企业应用开发的主流.随着时间的推移,基于浏览器的B/ ...

  8. h5微信分享

    h5分享的步骤(前端需要完成的部分) 1.绑定域名 登录微信公众平台进入“公众号设置”的“功能设置”里填写“JS接口安全域名”. 2.引入Js文件 在需要调用JS接口的页面引入如下JS文件,(支持ht ...

  9. 记一次 Windows MySQL 恢复

    0x00 事件 因为本地的服务器硬件出现故障,导致一台 Windows 系统的开发环境挂了,且无法短时间内恢复状态. 应急方案是使用了云上的系统重建了开发环境. 开发人员说需要挂了的那台 Window ...

  10. 安装Windows Server 2008

    下面介绍一下,Windows Server操作系统安装,以及在企业中的应用,在小型企业中可以使用不同的版本搭建不同类型的服务,小型企业中可以搭建Web服务,FTP服务,以及DNS和DHCP服务等,在大 ...