Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp
F. Daniel and Spring Cleaning
While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it seems like it is broken. When he tries to compute 1+3 using the calculator, he gets 2 instead of 4. But when he tries computing 1+4, he gets the correct answer, 5. Puzzled by this mystery, he opened up his calculator and found the answer to the riddle: the full adders became half adders!
So, when he tries to compute the sum a+b using the calculator, he instead gets the xorsum a⊕b (read the definition by the link: https://en.wikipedia.org/wiki/Exclusive_or).
As he saw earlier, the calculator sometimes gives the correct answer. And so, he wonders, given integers l and r, how many pairs of integers (a,b) satisfy the following conditions:
a+b=a⊕b
l≤a≤r
l≤b≤r
However, Daniel the Barman is going to the bar and will return in two hours. He tells you to solve the problem before he returns, or else you will have to enjoy being blocked.
Input
The first line contains a single integer t (1≤t≤100) — the number of testcases.
Then, t lines follow, each containing two space-separated integers l and r (0≤l≤r≤109).
Output
Print t integers, the i-th integer should be the answer to the i-th testcase.
Example
input
3
1 4
323 323
1 1000000
output
8
0
3439863766
Note
a⊕b denotes the bitwise XOR of a and b.
For the first testcase, the pairs are: (1,2), (1,4), (2,1), (2,4), (3,4), (4,1), (4,2), and (4,3).
题意
给你l,r;问你[l,r]中有多少对数满足a+b = a^b
题解
a+b=a^b其实就是求二进制中每一位都不同的对数。
首先考虑容斥,假设我们知道solve(l,r)就是求[1,l],[1,r]中有多少对答案。
那么最终答案就是solve(r,r)-2solve(l-1,r)+solve(l-1,l-1)
然后这个数位dp,我们正常去跑就行。dp[i][sa][sb]表示考虑第i位,a是否到达的最大值,b是否到达了最大值。然后枚举即可。
代码
#include<bits/stdc++.h>
using namespace std;
long long dp[35][2][2];
long long ans(int l,int r,int x,int sa,int sb){
if(x==-1)return 1;
if(dp[x][sa][sb]!=-1)return dp[x][sa][sb];
int ma=1,mb=1;
if(sa)ma=(l>>x)&1;
if(sb)mb=(r>>x)&1;
dp[x][sa][sb]=0;
for(int i=0;i<=ma;i++){
for(int j=0;j<=mb;j++){
if((i&j)==0){
dp[x][sa][sb]+=ans(l,r,x-1,sa&(i==ma),sb&(j==mb));
}
}
}
return dp[x][sa][sb];
}
long long ans(int l,int r){
if(l<0||r<0)return 0;
memset(dp,-1,sizeof(dp));
return ans(l,r,30,1,1);
}
void solve(){
int l,r;
scanf("%d%d",&l,&r);
cout<<ans(r,r)-2*ans(l-1,r)+ans(l-1,l-1)<<endl;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
solve();
}
}
Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp的更多相关文章
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)
题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...
- Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索
题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...
- Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)
yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...
- Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)
数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)
题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
随机推荐
- 关于js的for in循环,慎用
参考:http://www.cftea.com/c/2014/08/6290.asp作者:vkvi 如题我看到也有点诧异,测试了真的有这个问题,上代码 Array.prototype.a = func ...
- 十分钟 CODING DevOps 全链路体验
近期 CODING 团队在 2019 KubeCon 大会上发布 DevOps 一站式解决方案:CODING 2.0.此次 CODING 全新上线了持续集成与制品库模块,通过自动化与标准化的方式来帮助 ...
- 微信小程序框架部署:mpvue+typescript
开发前提: 1.在微信公众平台注册申请 AppID 2.安装开发者工具https://developers.weixin.qq.com/miniprogram/dev/devtools/downloa ...
- 【tf.keras】TensorFlow 1.x 到 2.0 的 API 变化
TensorFlow 2.0 版本将 keras 作为高级 API,对于 keras boy/girl 来说,这就很友好了.tf.keras 从 1.x 版本迁移到 2.0 版本,需要修改几个地方. ...
- 32(1).层次聚类---AGNES
层次聚类hierarchical clustering 试图在不同层次上对数据集进行划分,从而形成树形的聚类结构. 一. AGNES AGglomerative NESting:AGNES是一种常用的 ...
- github二级域名配置
首先打开GitHub并登上你的GitHub账号 新建仓库 点击settings 接下来就是操作git往这个仓库存文件,该域名会访问index.html文件
- 基于V7的emWin多屏显示方案模板,同时驱动LCD和OLED例程
说明: 1.多屏驱动跟多图层驱动是类似的,可以使用函数GUI_SelectLayer做切换选择. 2.为了避免OLED闪烁问题,创建一个128*64bit的显存空间,然后使用emWin的GUI_TIM ...
- ElementPath
ElementTree库附带了一个简单的类似XPath的路径语言ElementPath主要区别在于,可以在ElementPath表达式中使用{namespace}标记符号但是,诸如值比较和函数之类的高 ...
- HTML中跨域请求天气粗略效果
HTML中跨域请求天气粗略效果 html+css部分: <style> table{ border:1px red solid; border-collapse: collapse; ma ...
- Jrebel实现tomcat热部署,遇到的问题以及解决办法,详解
我的安装的详细过程: 下载Jrebel: https://github.com/ilanyu/ReverseProxy/releases/tag/v1.4 我的是winx64,所以选择如下的: 下载 ...