F. Daniel and Spring Cleaning

While doing some spring cleaning, Daniel found an old calculator that he loves so much. However, it seems like it is broken. When he tries to compute 1+3 using the calculator, he gets 2 instead of 4. But when he tries computing 1+4, he gets the correct answer, 5. Puzzled by this mystery, he opened up his calculator and found the answer to the riddle: the full adders became half adders!

So, when he tries to compute the sum a+b using the calculator, he instead gets the xorsum a⊕b (read the definition by the link: https://en.wikipedia.org/wiki/Exclusive_or).

As he saw earlier, the calculator sometimes gives the correct answer. And so, he wonders, given integers l and r, how many pairs of integers (a,b) satisfy the following conditions:

a+b=a⊕b

l≤a≤r

l≤b≤r

However, Daniel the Barman is going to the bar and will return in two hours. He tells you to solve the problem before he returns, or else you will have to enjoy being blocked.

Input

The first line contains a single integer t (1≤t≤100) — the number of testcases.

Then, t lines follow, each containing two space-separated integers l and r (0≤l≤r≤109).

Output

Print t integers, the i-th integer should be the answer to the i-th testcase.

Example

input

3

1 4

323 323

1 1000000

output

8

0

3439863766

Note

a⊕b denotes the bitwise XOR of a and b.

For the first testcase, the pairs are: (1,2), (1,4), (2,1), (2,4), (3,4), (4,1), (4,2), and (4,3).

题意

给你l,r;问你[l,r]中有多少对数满足a+b = a^b

题解

a+b=a^b其实就是求二进制中每一位都不同的对数。

首先考虑容斥,假设我们知道solve(l,r)就是求[1,l],[1,r]中有多少对答案。

那么最终答案就是solve(r,r)-2solve(l-1,r)+solve(l-1,l-1)

然后这个数位dp,我们正常去跑就行。dp[i][sa][sb]表示考虑第i位,a是否到达的最大值,b是否到达了最大值。然后枚举即可。

代码

#include<bits/stdc++.h>
using namespace std; long long dp[35][2][2];
long long ans(int l,int r,int x,int sa,int sb){ if(x==-1)return 1;
if(dp[x][sa][sb]!=-1)return dp[x][sa][sb];
int ma=1,mb=1;
if(sa)ma=(l>>x)&1;
if(sb)mb=(r>>x)&1;
dp[x][sa][sb]=0;
for(int i=0;i<=ma;i++){
for(int j=0;j<=mb;j++){
if((i&j)==0){
dp[x][sa][sb]+=ans(l,r,x-1,sa&(i==ma),sb&(j==mb));
}
}
}
return dp[x][sa][sb];
}
long long ans(int l,int r){
if(l<0||r<0)return 0;
memset(dp,-1,sizeof(dp));
return ans(l,r,30,1,1);
}
void solve(){
int l,r;
scanf("%d%d",&l,&r);
cout<<ans(r,r)-2*ans(l-1,r)+ans(l-1,l-1)<<endl;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
solve();
}
}

Codeforces Round #597 (Div. 2) F. Daniel and Spring Cleaning 数位dp的更多相关文章

  1. Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)

    F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...

  2. Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)

    题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...

  3. Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索

    题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...

  4. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  5. Codeforces Round #157 (Div. 2) D. Little Elephant and Elections(数位DP+枚举)

    数位DP部分,不是很难.DP[i][j]前i位j个幸运数的个数.枚举写的有点搓... #include <cstdio> #include <cstring> using na ...

  6. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  7. Codeforces Round #460 (Div. 2) B Perfect Number(二分+数位dp)

    题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  8. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  9. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

随机推荐

  1. 分布式缓存 Redis 集群搭建

    Redis 集群简介 Redis Cluster 即 Redis 集群,是 Redis 官方在 3.0 版本推出的一套分布式存储方案.完全去中心化,由多个节点组成,所有节点彼此互联.Redis 客户端 ...

  2. iOS---------金额转大写

    -(NSString *)digitUppercase:(NSString *)numstr{ double numberals=[numstr doubleValue]; NSArray *numb ...

  3. sql语句中给列参数取别名及相关注意事项

    1.使用双引号 select count(*) "总数" from table: 2.使用单引号 select count(*) '总数' from table: 3.直接加别名, ...

  4. memcache和redis缓存对比及我为什么选择redis

    对比结论 1. 性能上: 性能上都很出色,具体到细节,由于Redis只使用单核,而Memcached可以使用多核,所以平均每一个核上Redis在存储小数据时比Memcached性能更高.而在100k以 ...

  5. Tornado—三种启动tornado的方式

    第一种启动方式:单进程 import tornado.web # web服务 import tornado.ioloop # I/O 时间循环 class Mainhandler(tornado.we ...

  6. 电竞行业年轻新潮流yabo055解读亚博电竞3.0时代

    据相关统计,目前我国电竞行业yabo055点康姆的电竞竞菜市场规模最少在百亿级别以上,这是在以前完全不能想象的.2018年,中国正式开始进入Gaming 3.0时代.想要投入电竞行业的人员越来越多,不 ...

  7. Go 数组(array) & 切片(slice)

    数组 数组是一组固定长度的序列 数组类型 数组的类型不仅和储存元素的类型有关,还和数组长度有关,不同长度的数组是不同的类型 不同类型的数组不能共用一个函数 func main() { var a [1 ...

  8. Django信号机制相关解释与示例

    Django 信号# django自带一套信号机制来帮助我们在框架的不同位置之间传递信息.也就是说,当某一事件发生时,信号系统可以允许一个或多个发送者(senders)将通知或信号(signals)发 ...

  9. SpringBoot2.0 基础案例(16):配置Actuator组件,实现系统监控

    本文源码 GitHub地址:知了一笑 https://github.com/cicadasmile/spring-boot-base 一.Actuator简介 1.监控组件作用 在生产环境中,需要实时 ...

  10. SpringCloud的入门学习之Eureka(高可用注册中心HA)构建Provider服务、Consumer服务

    1.在高可用的Eureka注册中心中构建provider服务. 使用springboot的多环境配置,来搭建Eureka的高可用集群式部署.由于使用的是maven构建的springboot项目,所以首 ...