02-20 kd树(鸢尾花分类)
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
kd树(鸢尾花分类)
一、导入模块
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib.font_manager import FontProperties
from sklearn import datasets
from sklearn.neighbors import KDTree
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
二、获取数据
iris_data = datasets.load_iris()
X = iris_data.data[:, [2, 3]]
y = iris_data.target
label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
三、构建决策边界
def plot_decision_regions(X, y, classifier):
marker_list = ['o', 'x', 's']
color_list = ['r', 'b', 'g']
cmap = ListedColormap(color_list[:len(np.unique(y))])
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
t1 = np.linspace(x1_min, x1_max, 666)
t2 = np.linspace(x2_min, x2_max, 666)
x1, x2 = np.meshgrid(t1, t2)
# y_hat_ind:最近的3个邻居的索引
# y_hat_dist:距离最近的3个邻居的距离
y_hat_dist, y_hat_ind = classifier.query(
np.array([x1.ravel(), x2.ravel()]).T, k=3) # 搜索最近的3个邻居
# 选出类别最多的邻居作为自己类别
y_hat_list = []
for i in range(len(y_hat_ind)):
y_hat_i = Counter(y_hat_ind[i, :]).most_common(1)[0][0]
y_hat_list.append(y_hat_i)
y_hat = y[y_hat_list]
y_hat = y_hat.reshape(x1.shape)
plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)
plt.xlim(x1.min(), x1.max())
plt.ylim(x2.min(), x2.max())
for ind, clas in enumerate(np.unique(y)):
plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
四、训练模型
kdtree = KDTree(X)
五、可视化
plot_decision_regions(X, y, classifier=kdtree)
plt.xlabel('花瓣长度(cm)', fontproperties=font)
plt.ylabel('花瓣宽度(cm)', fontproperties=font)
plt.legend(prop=font)
plt.show()
_10_0.png?x-oss-process=style/watermark)
02-20 kd树(鸢尾花分类)的更多相关文章
- 【分类算法】K近邻(KNN) ——kd树(转载)
K近邻(KNN)的核心算法是kd树,转载如下几个链接: [量化课堂]一只兔子帮你理解 kNN [量化课堂]kd 树算法之思路篇 [量化课堂]kd 树算法之详细篇
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...
- 02-17 kd树
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
- k临近法的实现:kd树
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7 ...
- 统计学习方法学习(四)--KNN及kd树的java实现
K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 ...
随机推荐
- shell中日期循环的方式
第一种 # 这里的例子以周为循环 !/bin/bash begin_date="20160907" end_date="20170226" while [ &q ...
- Docker搭建disconf环境,三部曲之二:本地快速构建disconf镜像
Docker下的disconf实战全文链接 <Docker搭建disconf环境,三部曲之一:极速搭建disconf>: <Docker搭建disconf环境,三部曲之二:本地快速构 ...
- LeetCode探索初级算法 - 动态规划
LeetCode探索初级算法 - 动态规划 今天在LeetCode上做了几个简单的动态规划的题目,也算是对动态规划有个基本的了解了.现在对动态规划这个算法做一个简单的总结. 什么是动态规划 动态规划英 ...
- java读写文件IO
package Common.readFile; import Common.tool.User; import com.fasterxml.jackson.databind.ObjectMapper ...
- Helm 从入门到实践 | 从 0 开始制作一个 Helm Charts
本周 Helm 官方发布博客,指导用户从 v2 迁移到 v3,这标志 Helm 逐渐走向成熟.早在今年 6 月,阿里云就正式发布了国内首个 Helm Hub 中国镜像站:开放云原生应用中心 - Clo ...
- 5.cookie每个参数的意义和作用以及工作原理?
cookie主要参数有: (1)expires 过期时间 (2)path cookie存放路径 (3)domain 域名 同域名下可访问 (4)Set-Cookie: name cookie名称
- 安全性测试:OWASP ZAP 2.8 使用指南(二):ZAP基础操作
ZAP桌面应用 ZAP桌面应用由以下元素组成: 1. 菜单栏 – 提供多种自动化和手动工具的访问 2. 工具栏 – 提供快速访问最常用组件的用户接口 3. 树结构窗口 – 展示被测网站树结构和脚 ...
- SpringBoot 2.0 + Nacos + Sentinel 流控规则集中存储
前言 Sentinel 原生版本的规则管理通过API 将规则推送至客户端并直接更新到内存中,并不能直接用于生产环境.不过官方也提供了一种 Push模式,扩展读数据源ReadableDataSource ...
- jmeter 查看结果树数据分析 优化
1.点击查看结果树,配置 2.筛选功能项
- MySQL设计表规范
规范总结 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用 MySQL 保留关键字[设计表后逐一排查] 所有表必须使用 Innodb 存储引擎,数据库和表的字符集统一使用 ...