【香甜的黄油 Sweet Butter】

洛谷P1828

https://www.luogu.org/problemnew/show/P1828

JDOJ 1803

https://neooj.com/oldoj/problem.php?id=1803

一眼就看出来是个最短路,看题目这么短就觉得是个裸的

然后就

真香

我不知道用dijkstra会被卡掉,但是我运气好第一遍写的就是SPFA就过了。这篇题解就给大家分析一下各最短路算法以及这道题为什么适用SPFA。

floyd算法

这个东西轻易不要用,因为是O(n^3)的,很容易就会爆掉,但是真的想用也没问题,看一下数据范围,一般不超过500都可以(如果是100-200的就比较稳了,500以上的还是慎重). 搭配邻接矩阵就很好用。

dijkstra算法

单源最短路最常见的算法,时间复杂度是O(n^2)的,但是这题就不能用

为什么呢????

因为要枚举每个点啊!!那复杂度就是O(n^3)的了,简直是找死......

所以我们只能出其最后一策了

SPFA算法

名字很高大上,事实上的确很快,加了个队列的数据结构,非常好理解,时间复杂度是O(km)(k约等于2)的,跟边的数量有关,适合

稀疏图(边少)

而dj的复杂度跟点有关,所以可以搞

稠密图(边多)

综上所述,这道题的时间复杂度就是O(nmk)的,就可以方方便便地AC了。

TALK LESS,SHOW ME THE CODE.

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
int cow,n,m,ans=;
int position[];
int total,to[],value[],naxt[],head[];
int f[],v[];
void add(int x,int y,int z)
{
to[++total]=y;
value[total]=z;
naxt[total]=head[x];
head[x]=total;
}
void spfa(int start)
{
memset(f,0x3f,sizeof(f));
memset(v,,sizeof(v));
queue<int> q;
q.push(start);f[start]=;v[start]=;
while(!q.empty())
{
int x,y;
x=q.front();q.pop();v[x]=;
for(int i=head[x];i;i=naxt[i])
if(f[y=to[i]]>f[x]+value[i])
{
f[y]=f[x]+value[i];
if(v[y]==) v[y]=,q.push(y);
}
}
}
int main()
{
scanf("%d%d%d",&cow,&n,&m);
for(int i=;i<=cow;i++)
scanf("%d",&position[i]);
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
for(int i=;i<=n;i++)
{
int dist=;
spfa(i);
for(int j=;j<=cow;j++)
dist+=f[position[j]];
ans=min(ans,dist);
}
printf("%d",ans);
return ;
}

学过了Dijkstra堆优化之后,用DIJ也可以AC。

没有学习DIJ堆优化的请进入以下链接~

https://www.cnblogs.com/fusiwei/p/11390537.html

代码如下:

#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
int n,p,c,ans=1e9;
int pos[];
int tot,to[],val[],nxt[],head[];
int dist[];
priority_queue<pair<int,int> >q;
void add(int x,int y,int z)
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
void dijkstra(int start)
{
memset(dist,0x3f,sizeof(dist));
dist[start]=;
q.push(make_pair(,start));
while(!q.empty())
{
while(!q.empty() && -q.top().first>dist[q.top().second])
q.pop();
if(q.empty())
return;
int x=q.top().second;
q.pop();
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(dist[y]>dist[x]+val[i])
{
dist[y]=dist[x]+val[i];
q.push(make_pair(-dist[y],y));
}
}
}
}
int main()
{
scanf("%d%d%d",&n,&p,&c);
for(int i=;i<=n;i++)
scanf("%d",&pos[i]);
for(int i=;i<=c;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
for(int i=;i<=p;i++)
{
int dis=;
dijkstra(i);
for(int j=;j<=n;j++)
dis+=dist[pos[j]];
ans=min(ans,dis);
}
printf("%d",ans);
return ;
}

【香甜的黄油 Sweet Butter】的更多相关文章

  1. 洛谷P1828 香甜的黄油 Sweet Butter

    P1828 香甜的黄油 Sweet Butter 241通过 724提交 题目提供者JOHNKRAM 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 我的SPFA为什么TLE.. 为 ...

  2. P1828 香甜的黄油 Sweet Butter 最短路 寻找一个点使得所有点到它的距离之和最小

    P1828 香甜的黄油 Sweet Butter 闲来无事 写了三种最短路(那个Floyed是不过的) 题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1 ...

  3. [最短路]P1828 香甜的黄油 Sweet Butter

    题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油.当然,他将付出额外的费 ...

  4. P1828 香甜的黄油 Sweet Butter

    对于这道洛谷ac而我整了一下午的codevs的题,我也是很绝望啊. 原因是队列数组开小了我勒个去???我说STL怎么能过 题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧 ...

  5. [LUOGU] P1828 香甜的黄油 Sweet Butter

    题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油.当然,他将付出额外的费 ...

  6. P1828 香甜的黄油 Sweet Butter (spfa)

    题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油.当然,他将付出额外的费 ...

  7. P1828 [USACO3.2]香甜的黄油 Sweet Butter

    题目描述 农夫$John$发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道$N(1\leqslant N\leqslant 500)$只奶牛会过来舔它,这样就能做出能卖好价钱的超甜 ...

  8. USACO Section 3.2 香甜的黄油 Sweet Butter

    本题是多源最短路问题 但使用弗洛伊德算法会超时 而因为边数目比较少 所以用队列优化后的迪杰斯特拉算法可以通过 #include<iostream> #include<cstring& ...

  9. 香甜的黄油 Sweet Butter

    原题链接:https://www.luogu.org/problem/show?pid=1828#sub 经典的最短路问题. 各位不要被题目条件迷惑了,牧场想象成点,道路想象成边,奶牛所在的位置想象成 ...

随机推荐

  1. Node.js接口避免重复启动

    众所周知,一个Node接口要是想被调用,得先在命令行中执行如下代码来启动接口 node base.js 但是一旦修改了base.js,就得重新执行这句命令 注:这里的base.js是我的node接口文 ...

  2. licode(1) Basic Example 客户端解析

    整体 在浏览其中输入https://dst_host_domain:13004后, 请求了index.html,该文件在licode\extras\basic_example\public\index ...

  3. python执行cmd命令

    os.system os.system用来执行cmd指令,在cmd输出的内容会直接在控制台输出,返回结果为0表示执行成功 注意:os.system是简单粗暴的执行cmd指令,如果想获取在cmd输出的内 ...

  4. 80%应聘者都不及格的JS面试题

    共 5024 字,读完需 6 分钟,速读需 2 分钟,本文首发于知乎专栏前端周刊.写在前面,笔者在做面试官这 2 年多的时间内,面试了数百个前端工程师,惊讶的发现,超过 80% 的候选人对下面这道题的 ...

  5. golang数据结构之环形队列

    目录结构: circlequeue.go package queue import ( "errors" "fmt" ) //CircleQueue 环型队列 ...

  6. PHP 的异步并行和协程 C 扩展 Swoole (附链接)

    PHP的异步.并行.高性能网络通信引擎,使用纯C语言编写,提供了PHP语言的异步多线程服务器,异步TCP/UDP网络客户端,异步MySQL,异步Redis,数据库连接池,AsyncTask,消息队列, ...

  7. zookeeper C client API 和zkpython 的安装

    1 zookeeper C API 安装 yum install -y ant 在解压的zookeeper包中执行: ant compile_jute 进入src/c 安装:yum -y instal ...

  8. jvm 性能调优工具之 jstat

    概述 Jstat是JDK自带的一个轻量级小工具.全称“Java Virtual Machine statistics monitoring tool”,它位于java的bin目录下,主要利用JVM内建 ...

  9. C# Newtonsoft.Json 读取文件,返回json字符串

    第一种方法: public object getData2() { string content; using (StreamReader sr = new StreamReader(Server.M ...

  10. MySQL,必须掌握的6个知识点

    本人免费整理了Java高级资料,涵盖了Java.Redis.MongoDB.MySQL.Zookeeper.Spring Cloud.Dubbo高并发分布式等教程,一共30G,需要自己领取.传送门:h ...