剖析nsq消息队列-目录

实际应用中,一部分服务集群可能会同时订阅同一个topic,并且处于同一个channel下。当nsqd有消息需要发送给订阅客户端去处理时,发给哪个客户端是需要考虑的,也就是我要说的消息的负载。

如果不考虑负载情况,把随机的把消息发送到某一个客服端去处理消息,如果机器的性能不同,可能发生的情况就是某一个或几个客户端处理速度慢,但还有大量新的消息需要处理,其他的客户端处于空闲状态。理想的状态是,找到当前相对空闲的客户端去处理消息。

nsq的处理方式是客户端主动向nsqd报告自已的可处理消息数量(也就是RDY命令)。nsqd根据每个连接的客户端的可处理消息的状态来随机把消息发送到可用的客户端,来进行消息处理

如下图所示:

客户端更新RDY

从第一篇帖子的例子中我们就有配置consumer的config

	config := nsq.NewConfig()
config.MaxInFlight = 1000
config.MaxBackoffDuration = 5 * time.Second
config.DialTimeout = 10 * time.Second

MaxInFlight 来设置最大的处理中的消息数量,会根据这个变量计算在是否更新RDY

初始化的时候 客户端会向连接的nsqd服务端来发送updateRDY来设置最大处理数,

func (r *Consumer) maybeUpdateRDY(conn *Conn) {
inBackoff := r.inBackoff()
inBackoffTimeout := r.inBackoffTimeout()
if inBackoff || inBackoffTimeout {
r.log(LogLevelDebug, "(%s) skip sending RDY inBackoff:%v || inBackoffTimeout:%v",
conn, inBackoff, inBackoffTimeout)
return
} remain := conn.RDY()
lastRdyCount := conn.LastRDY()
count := r.perConnMaxInFlight() // refill when at 1, or at 25%, or if connections have changed and we're imbalanced
if remain <= 1 || remain < (lastRdyCount/4) || (count > 0 && count < remain) {
r.log(LogLevelDebug, "(%s) sending RDY %d (%d remain from last RDY %d)",
conn, count, remain, lastRdyCount)
r.updateRDY(conn, count)
} else {
r.log(LogLevelDebug, "(%s) skip sending RDY %d (%d remain out of last RDY %d)",
conn, count, remain, lastRdyCount)
}
}

当剩余的可用处理数量remain 小于等于1,或者小于最后一次设置的可用数量lastRdyCount的1/4时,或者可用连接平均的maxInFlight大于0并且小于remain时,则更新RDY状态

当有多个nsqd时,会把最大的消息进行平均计算:

// perConnMaxInFlight calculates the per-connection max-in-flight count.
//
// This may change dynamically based on the number of connections to nsqd the Consumer
// is responsible for.
func (r *Consumer) perConnMaxInFlight() int64 {
b := float64(r.getMaxInFlight())
s := b / float64(len(r.conns()))
return int64(math.Min(math.Max(1, s), b))
}

当有消息从nsqd发送过来后也会调用maybeUpdateRDY方法,计算是否需要发送RDY命令

func (r *Consumer) onConnMessage(c *Conn, msg *Message) {
atomic.AddInt64(&r.totalRdyCount, -1)
atomic.AddUint64(&r.messagesReceived, 1)
r.incomingMessages <- msg
r.maybeUpdateRDY(c)
}

上面就是主要的处理逻辑,但还有一些逻辑,就是当消息处理发生错误时,nsq有自己的退避算法backoff也会更新RDY 简单来说就是当发现有处理错误时,来进行重试和指数退避,在退避期间RDY会为0,重试时会先放尝试RDY为1看有没有错误,如果没有错误则全部放开,这个算法这篇帖子我就不详细说了。

服务端nsqd选择客户端进行发送消息

同时订阅同一topic的客户端(comsumer)有很多个,每个客户端根据自己的配置或状态发送RDY命令到nsqd表明自己能处理多少消息量

nsqd服务端会检查每个客户端的的状态是否可以发送消息。也就是IsReadyForMessages方法,判断inFlightCount是否大于readyCount,如果大于或者等于就不再给客户端发送数据,等待Ready后才会再给客户端发送数据

func (c *clientV2) IsReadyForMessages() bool {
if c.Channel.IsPaused() {
return false
} readyCount := atomic.LoadInt64(&c.ReadyCount)
inFlightCount := atomic.LoadInt64(&c.InFlightCount) c.ctx.nsqd.logf(LOG_DEBUG, "[%s] state rdy: %4d inflt: %4d", c, readyCount, inFlightCount) if inFlightCount >= readyCount || readyCount <= 0 {
return false
} return true

每一次发送消息inFlightCount会+1并保存到发送中的队列中,当客户端发送FIN会-1在之前的帖子中有说过。

func (p *protocolV2) messagePump(client *clientV2, startedChan chan bool) {
// ...
for {
// 检查订阅状态和消息是否可处理状态
if subChannel == nil || !client.IsReadyForMessages() {
// the client is not ready to receive messages...
memoryMsgChan = nil
backendMsgChan = nil
flusherChan = nil
// ...
flushed = true
} else if flushed {
memoryMsgChan = subChannel.memoryMsgChan
backendMsgChan = subChannel.backend.ReadChan()
flusherChan = nil
} else {
memoryMsgChan = subChannel.memoryMsgChan
backendMsgChan = subChannel.backend.ReadChan()
flusherChan = outputBufferTicker.C
} select {
case <-flusherChan:
// ...
// 消息处理
case b := <-backendMsgChan:
client.SendingMessage()
// ...
case msg := <-memoryMsgChan:
client.SendingMessage()
//...
}
}
// ...
}

剖析nsq消息队列(四) 消息的负载处理的更多相关文章

  1. 为什么使用消息队列?消息队列有什么优点和缺点?Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么优点和缺点?

    面试题 为什么使用消息队列? 消息队列有什么优点和缺点? Kafka.ActiveMQ.RabbitMQ.RocketMQ 都有什么区别,以及适合哪些场景? 面试官心理分析 其实面试官主要是想看看: ...

  2. (二)RabbitMQ消息队列-RabbitMQ消息队列架构与基本概念

    原文:(二)RabbitMQ消息队列-RabbitMQ消息队列架构与基本概念 没错我还是没有讲怎么安装和写一个HelloWord,不过快了,这一章我们先了解下RabbitMQ的基本概念. Rabbit ...

  3. System V 消息队列 - 复用消息

    消息队列中的消息结构可以由我们自由定义,具备较强的灵活性.通过消息结构可以共享一个队列,进行消息复用.通常定义一个类似如下的消息结构: #define MSGMAXDAT 1024 struct my ...

  4. rabbitmq消息队列,消息发送失败,消息持久化,消费者处理失败相关

    转:https://blog.csdn.net/u014373554/article/details/92686063 项目是使用springboot项目开发的,前是代码实现,后面有分析发送消息失败. ...

  5. activemq读取剩余消息队列中消息的数量

    先上原文链接: http://blog.csdn.net/bodybo/article/details/5647968  ActiveMQ在C#中的应用 ActiveMQ是个好东东,不必多说.Acti ...

  6. 为什么使用消息队列? 消息队列有什么优点和缺点? Kafka、ActiveMQ、RabbitMQ、RocketMQ 都有什么区别,以及适合哪些场景?

    https://blog.csdn.net/Iperishing/article/details/86674084

  7. 剖析nsq消息队列目录

    剖析nsq消息队列(一) 简介及去中心化实现原理 剖析nsq消息队列(二) 去中心化源码解析 剖析nsq消息队列(三) 消息传输的可靠性和持久化[一] 剖析nsq消息队列(三) 消息传输的可靠性和持久 ...

  8. 四十九、进程间通信——System V IPC 之消息队列

    49.1 System V IPC 介绍 49.1.1 System V IPC 概述 UNIX 系统存在信号.管道和命名管道等基本进程间通讯机制 System V 引入了三种高级进程间通信机制 消息 ...

  9. Linux网络编程学习(九) ----- 消息队列(第四章)

    1.System V IPC System V中引入的几种新的进程间通信方式,消息队列,信号量和共享内存,统称为System V IPC,其具体实例在内核中是以对象的形式出现的,称为IPC 对象,每个 ...

随机推荐

  1. JSONP安全防御要点

    严格安全地实现CSRF方式调用JSON文件:限制Referer.部署一次性token等. 严格安装JSON格式标准输出Content-Type及编码(Content-Type: application ...

  2. Shell进阶精品课程

    课程链接 Shell精品进阶教程:理解Shell的方方面面 课程目标 系统性的掌握shell相关知识,进阶shell脚本能力,对shell各方面了然于心 适用人群 具备shell基础但想深入.系统性掌 ...

  3. 基于redis解决session分布式一致性问题

    1.session是什么 当用户在前端发起请求时,服务器会为当前用户建立一个session,服务器将sessionId回写给客户端,只要用户浏览器不关闭,再次请求服务器时,将sessionId传给服务 ...

  4. "Dependency on app with no migrations: %s" % key[0]

    问题描述:我在model中建好模型类,运行的控制台就报错误: 解决方法:1,首先需要在setting中重载AUTH_USER_MODEL AUTH_USER_MODEL = 'users.UserPr ...

  5. oracle 特殊符号替换删除处理

    1 获取ascii码 select ascii('特殊字符') from dual 2 替换 update table set testfield= replace(testfield,chr(asc ...

  6. Docker在Linux上 基本使用

    简介 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任 ...

  7. [springboot 开发单体web shop] 4. Swagger生成Javadoc

    Swagger生成JavaDoc 在日常的工作中,特别是现在前后端分离模式之下,接口的提供造成了我们前后端开发人员的沟通 成本大量提升,因为沟通不到位,不及时而造成的[撕币]事件都成了日常工作.特别是 ...

  8. 【 格式化时间(SimpleDateFormat)用法】

    将特定字符串转换成Date格式 可以通过 new 一个 SimpleDateFormat 对象,通过对象调用parse方法实现 示例代码: String time = "2019-11-09 ...

  9. 5. SOFAJRaft源码分析— RheaKV中如何存放数据?

    概述 上一篇讲了RheaKV是如何进行初始化的,因为RheaKV主要是用来做KV存储的,RheaKV读写的是相当的复杂,一起写会篇幅太长,所以这一篇主要来讲一下RheaKV中如何存放数据. 我们这里使 ...

  10. csps60爆零记

    整场考试心态是崩的,T1水题打了半天表,将近两个小时才A掉. T2数据结构题想麻烦了,码了5.1K(数据结构选手) 等到最后一刻我发现T3水题,生无可恋.jpg 然后吃屎地在暴力中输出了下标,(%%% ...