Violet 6 杯省选模拟赛 蒲公英
https://www.luogu.com.cn/problem/P4168
题目
给$n$个数字,有$m$次询问,问$a_l, a_{l+1} , \dots , a_r$的众数是什么,
$1\leqslant n \leqslant 40000, 1\leqslant m \leqslant 50000, 1\leqslant a_i\leqslant10^9$
题解
第一次做分块
方法一
因为n不是很大,所以可以对数据进行离散化后统计出现次数
所以就可以直接统计最大的了。这样复杂度是$\mathcal{O}(m\times n)$,肯定超时
可以尝试提前分块打出一些表,比如分成$t$块,然后提前打好$\binom{t}{2}$块的最大值,并保存是哪一个
那么每次查询的时候最多花$2\times \lfloor n/t\rfloor$的时间,时间复杂度是$\mathcal{O}(t^2n+2mn/t)$
把$m$和$n$看作同数量级,设为N,那么得到$t^2N+2N^2/t$,为了保证数量级相同,设$t^2N=2N^2/t$,得到$t=\sqrt[3]{N}$
因为大于或小于以后两边渐进复杂度都会增加,导致整个表达式的渐进复杂度增加(算法导论:证明$max(a,b)=\Theta(a+b)$)
AC代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
#define REP(i,a,b) for(register int i=(a); i<(b); i++)
#define REPE(i,a,b) for(register int i=(a); i<=(b); i++)
#define PERE(i,a,b) for(register int i=(a); i>=(b); i--)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) void(0)
#endif
typedef long long ll;
#define MAXN 40007
#define MAXM 50007
#define MAXD 35
int a[MAXN], b[MAXN], c[MAXN];
int d[MAXD][MAXD][MAXN];
int now[MAXN];
int t,l,na;
int x=0;
inline void did(int f) {
now[f]++;
if(now[na]<now[f] || (now[na]==now[f] && now[na+1]>f)) {
now[na+1]=f;
now[na]=now[f];
}
}
inline int go(int z, int y) {
int i=(z+l-1)/l, j=y/l;
int L=i*l, R=j*l;
if(i<j) {
REP(k,0,na+2)
now[k] = d[i][j][k];
REP(f,z,L) did(c[f]);
REP(f,R,y) did(c[f]);
} else {
memset(now,0,sizeof now);
REP(f,z,y) did(c[f]);
}
return x=b[now[na+1]];
}
int main() {
int n,m; scanf("%d%d", &n, &m);
REP(i,0,n) {scanf("%d", &a[i]); b[i]=a[i];}
sort(b,b+n); na = unique(b,b+n)-b;
REP(i,0,n) {
c[i] = lower_bound(b,b+na,a[i])-b;
}
memset(d,0,sizeof d);
t = pow((double)n, (double)1/3);
l = t ? n/t : n;
REP(i,0,t) REPE(j,i,t) {
REP(f,i*l,j*l) {
int k = c[f];// DBG("*%d\n", k);
d[i][j][k]++;
if(d[i][j][k]>d[i][j][na] || (d[i][j][k]==d[i][j][na] && k<d[i][j][na+1])) {
d[i][j][na] = d[i][j][k];
d[i][j][na+1] = k;
}
}
} REP(i,0,m) {
int l0, r0;
scanf("%d%d", &l0, &r0);
int l = (l0 + x - 1) % n + 1;
int r = (r0 + x - 1) % n + 1;
if(l>r) swap(l,r);
go(l-1,r);
printf("%d\n", x);
}
return 0;
}
方法二
用同样的分块方法,但是只记录最大值,不记录次数,而使用二分确定大小,一次二分确定大小需要$\mathcal{O}(\log n)$。
设需要分$D$块,然后得到时间复杂度$\mathcal{O}(D\times N+2MN/D\log n)$(因为剩下部分最长是两个块,虽然比平均情况大,但是为了应付数据,数据是最大的很多……)
那么用相同的方法,解得$D=\sqrt{2N\log N}$
中间有个细节,就是计算D和L的时候要考虑是偏大还是篇小,由于我快断电了,所以坑了
AC代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
#include<cassert>
using namespace std;
#define REP(i,a,b) for(register int i=(a); i<(b); i++)
#define REPE(i,a,b) for(register int i=(a); i<=(b); i++)
#define PERE(i,a,b) for(register int i=(a); i>=(b); i--)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) void(0)
#endif
typedef long long ll;
#define MAXN 50007
#define MAXM 50007
#define MAXL 1007
#define MAXD 884*2
int a[MAXN],b[MAXN],c[MAXN],nb;
int fk[MAXD][MAXD], L, D;
int cnt[MAXN], nmax, ncnt;
int x=0;
vector<int> arr[MAXN];
int calc(int l, int r, int b) {
//r--;
return lower_bound(arr[b].begin(), arr[b].end(), r)-lower_bound(arr[b].begin(), arr[b].end(), l);
}
void did(int l, int r, int b) {
int t=calc(l,r,b);
if(t>ncnt || (t==ncnt && b<nmax)) {
ncnt=t;
nmax=b;
}
}
void work(int l, int r) {
nmax=0, ncnt=0;
int z=(l+L-1)/L, y=r/L;
if(z<y) {
int Z=z*L, Y=y*L;
REP(i,l,Z) did(l,r,c[i]);
REP(i,Y,r) did(l,r,c[i]);
did(l,r,fk[z][y]);
} else {
REP(i,l,r) did(l,r,c[i]);
}
x=b[nmax];
}
int main() {
int n,m; scanf("%d%d", &n, &m);
REP(i,0,n) {
scanf("%d", &a[i]);
b[i]=a[i];
}
sort(b,b+n);
nb = unique(b,b+n)-b;
REP(i,0,n) {
c[i] = lower_bound(b,b+nb,a[i])-b;
}
D = sqrt(log((double)n)/log(2.0)*n*2); if(D==0) D=1;
L = n/D; //L<L' D>D'
D = n/L; //L>L' D<D'
REP(i,0,D) {
int s=i*L;
nmax = 0, ncnt = 0;
REP(k,0,n) cnt[k]=0;
REP(j,s,n) {
int J=(j+1+L-1)/L, k=c[j];
cnt[k]++;
if(cnt[k]>ncnt ||(cnt[k]==ncnt && k<nmax)) {
ncnt = cnt[k];
nmax = k;
}
fk[i][J]=nmax;
}
}
REP(i,0,n) {
arr[c[i]].push_back(i);
}
REP(i,0,m) {
int l,r;
scanf("%d%d", &l, &r);
l = (l+x-1)%n+1, r=(r+x-1)%n+1;
if(l>r) swap(l,r);
work(l-1,r);
printf("%d\n", x);
}
}
Violet 6 杯省选模拟赛 蒲公英的更多相关文章
- Contest Hunter Round #70 - 连续两大交易事件杯省选模拟赛
orz lydrainbowcat [Problem A]「艦これ市」70万幕后交易事件 排序机器=-=.重要的是相同的处理. 我们可以从小到大添加数字,然后维护一个位置的序列.每一种相等的数字都在一 ...
- codehunter 「Adera 6」杯省选模拟赛 网络升级 【树形dp】
直接抄ppt好了--来自lyd 注意只用对根判断是否哟留下儿子 #include<iostream> #include<cstdio> using namespace std; ...
- 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解
今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...
- @省选模拟赛03/16 - T3@ 超级树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...
- 3.28 省选模拟赛 染色 LCT+线段树
发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...
- 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)
一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...
- NOI2019省选模拟赛 第五场
爆炸了QAQ 传送门 \(A\) \(Mas\)的童年 这题我怎么感觉好像做过--我记得那个时候还因为没有取\(min\)结果\(100\to 0\)-- 因为是个异或我们肯定得按位考虑贡献了 把\( ...
- NOI2019省选模拟赛 第六场
传送门 又炸了-- \(A\) 唐时月夜 不知道改了什么东西之后就\(A\)掉了\(.jpg\) 首先,题目保证"如果一片子水域曾经被操作过,那么在之后的施法中,这片子水域也一定会被操作&q ...
- 省选模拟赛 arg
1 arg (arg.cpp/in/out, 1s, 512MB)1.1 Description给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. ...
随机推荐
- 【Selenium】selenium.common.exceptions.ElementClickInterceptedException
出现问题: 使用代码点击提交按钮: driver.find_element(By.CSS_SELECTOR,"#submit").click() 出现如下异常: selenium. ...
- .NET 中数据访问用的 DBHelper(Sql Server) 类
public class DBHelper { private static string DBConnectString = "Data Source=.;Initial Catalog= ...
- ClassNotFoundException------IDEA下的一种原因
由于直接复制文件而未经过IDE造成次异常,需要修改程序入口:
- handler.postDelayed(new Runnable()){ }运行在主线程吗
答案:是的. handler.postDelayed(new Runnable() { @Override public void run() { tv_word.setVisibility(View ...
- java基础- 你真的了解运算符吗?
一 前言 学习java运算符的基础是你对数学和计算机原理有一定的要求,如果文章中有些位运算不懂是生么意思,我建议大家去学习一下计算机原理,计算机组成类别的书籍,你也不用深入过多,只要了解计算机大概结构 ...
- [ASP.NET Core 3框架揭秘] 配置[3]:配置模型总体设计
在<读取配置数据>([上篇],[下篇])上面一节中,我们通过实例的方式演示了几种典型的配置读取方式,接下来我们从设计的维度来重写认识配置模型.配置的编程模型涉及到三个核心对象,分别通过三个 ...
- [ASP.NET Core 3框架揭秘] 配置[6]:多样化的配置源[上篇]
.NET Core采用的这个全新的配置模型的一个主要的特点就是对多种不同配置源的支持.我们可以将内存变量.命令行参数.环境变量和物理文件作为原始配置数据的来源.如果采用物理文件作为配置源,我们可以选择 ...
- centos7.2中部署私有仓库harbor
1.安装docker #安装依赖和驱动 sudo yum install -y yum-utils device-mapper-persistent-data lvm2 #配置docker的官方源 s ...
- CVPR 2019轨迹预测竞赛冠军方法总结
背景 CVPR 2019 是机器视觉方向最重要的学术会议,本届大会共吸引了来自全世界各地共计 5160 篇论文,共接收 1294 篇论文,投稿数量和接受数量都创下了历史新高,其中与自动驾驶相关的论文. ...
- WebMvcConfigurationSupport 避坑指南
通过返回WebMvcConfigurationSupport 的方式, 默认会覆盖 Spring boot的自动配置, 导致配置失效静态资源无法访问:但是在WebMvcConfigurationadp ...