[算法模板]FFT-快速傅里叶变换

感谢ZYW聚聚为我们讲解FFT~

FFT

思路

我懒,思路和证明部分直接贴链接:

rvalue

LSJ-FFT与NTT基础

代码

主要思想是利用了单位根特殊的性质(n次单位根后一半幂跟前一半幂取值相等)。只是因为式子中奇数次幂还要提出来个\(\omega_n^k\),这个东西只要取个反就好了(即对称性:\(\omega_n^k=-\omega_n^{k+\frac{n}{2}}\))。

FFT递归:

#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=2e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
void fft(int l,comp *a,int f)
{
if(l==1) return;
comp a1[l>>1],a2[l>>1];
for(int i=0;i<l;i+=2)
{
a1[i>>1]=a[i];
a2[i>>1]=a[i+1];
}
fft(l>>1,a1,f); fft(l>>1,a2,f);
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)},w=(comp){1,0};
for(int i=0;i<(l>>1);i++,w=w*wn)
{
a[i]=a1[i]+w*a2[i];
a[i+(l>>1)]=a1[i]-w*a2[i];
}
}
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1; while(l<=n+m) l<<=1;
fft(l,a,1); fft(l,b,1);
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

因为其运行效率过低。我们一般使用迭代FFT。

FFT迭代:

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn=4*1e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int rev[maxn],rp;
void get_rev(int l)//l为位数,rev[i]代表i的二进制表示颠倒(二进制位有l位,不足补0)
{
for(int i=1;i<(1<<l);i++)
rev[i]=(rev[i>>1]>>1)|((1&i)<<l-1);
}
void fft(int len,comp *a,int f)
{
for(int i=1;i<len;i++)
if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int l=2;l<=len;l<<=1)//区间长度
{
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)};
for(int i=0;i+l<=len;i+=l)
{
comp w=(comp){1,0};
for(int k=i;k<i+(l>>1);k++,w=w*wn)
{
comp t=w*a[k+(l>>1)],tmp=a[k];
a[k]=tmp+t;
a[k+(l>>1)]=tmp-t;
}
}
}
}
//a[i]表示当x=单位根的i次方时y的值
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1,cnt=0; while(l<=n+m) l<<=1,cnt++;
get_rev(cnt);
fft(l,a,1); fft(l,b,1);//l是多项式项数
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

NTT

啊我饿了我要吃NTT

直接粘一张钟神的PPT:

代码

预处理原根次幂:

for(int i=2;i<(1<<l);i<<=1) {//枚举单位根周期长度(即w_n的n)
int w0=Pow(3,(P-1)/i),w1=Pow(3,P-1-(P-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;//wn[f][i],i的最高位代表是几次单位根,其他位代表是第几个。这里求的是i的单位根,因为前一半i单位根等于i/2的单位根所以是存储在i/2的位置.(推式子的时候推过,长度为len时代入单位根周期为len/2)
for(int j=1;j<(i>>1);++j)//w_i单位根的j次方(因为折半了所以只用求一半)
wn[0][(i>>1)+j]=wn[0][(i>>1)+j-1]*(ll)w0%P,
wn[1][(i>>1)+j]=wn[1][(i>>1)+j-1]*(ll)w1%P;
}

[模板]分治FFT

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=998244353;
const int maxn=3e5+10;
typedef long long ll;
ll a[maxn],b[maxn],f[maxn],g[maxn],wn[2][maxn];
int n,rev[maxn];
int ksm(int num,int t){
int res=1;
for(;t;t>>=1,num=1ll*num*num%mod){
if(t&1)res=1ll*res*num%mod;
}
return res;
}
void get_rev(int len){for(int i=1;i<(1<<len);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));}
void get_wn(int len){
for(int i=2;i<=(1<<len);i<<=1){
ll w1=ksm(3,(mod-1)/i),w0=ksm(3,mod-1-(mod-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;
for(int j=1;j<(i>>1);j++){
wn[0][j+(i>>1)]=wn[0][j+(i>>1)-1]*w0%mod;
wn[1][j+(i>>1)]=wn[1][j+(i>>1)-1]*w1%mod;
}
}
}
void NTT(int len,ll *c,int f){
for(int i=0;i<len;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int l=2;l<=len;l<<=1){
for(int i=0;i+l<=len;i+=l){
for(int k=i;k<i+(l>>1);k++){
ll tmp1=c[k],tmp2=wn[f][k+(l>>1)-i]*c[k+(l>>1)];
c[k]=(tmp1+tmp2)%mod;
c[k+(l>>1)]=(tmp1-tmp2+mod)%mod;
}
}
}
}
void cdq(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq(l,mid);
int cnt=0,len=1;while(len<=(r-l-1))len<<=1,cnt++;
for(int i=0;i<len;i++)a[i]=b[i]=0;
for(int i=0;i<=mid-l;i++)a[i]=f[i+l];
for(int i=0;i<=r-l-1;i++)b[i]=g[i+1];
// memset(rev,0,sizeof(rev));
get_rev(cnt);
NTT(len,a,1);NTT(len,b,1);
for(int i=0;i<len;i++)a[i]=a[i]*b[i]%mod;
NTT(len,a,0);
ll inv=ksm(len,mod-2);
for(int i=0;i<len;i++)a[i]=a[i]*inv%mod;
for(int i=mid+1;i<=r;i++)f[i]+=a[i-l-1],f[i]%=mod;
cdq(mid+1,r);
}
int main(){
f[0]=1;
scanf("%d",&n);get_wn(18);
for(int i=1;i<n;i++)scanf("%lld",&g[i]);
cdq(0,n-1);
for(int i=0;i<n;i++)printf("%lld ",(f[i]%mod+mod)%mod);
return 0;
}

[算法模板]FFT-快速傅里叶变换的更多相关文章

  1. 模板 FFT 快速傅里叶变换

    FFT模板,原理不难,优质讲解很多,但证明很难看太不懂 这模板题在bzoj竟然是土豪题,服了 #include <cmath> #include <cstdio> #inclu ...

  2. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  6. 「算法笔记」快速傅里叶变换(FFT)

    一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...

  7. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  8. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  9. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

随机推荐

  1. 磁盘分区(GPT)

    右击 我的电脑 → 管理 → 磁盘管理 (对磁盘1进行分区)右击 磁盘1 → 初始化 磁盘1 右击 磁盘1白色部分 → 新建磁盘分区 先创建主分区(主分区最多创建4个,扩展分区最多1个) 输入分区大小 ...

  2. Lua-Async 协程的高级用法

    Lua-Async 这是一个基于协程的异步调用库, 该库的设计思路类似JavaScript的Promise, 但相比Promise, 它有更多的灵活性. -- 引入Async local Async ...

  3. LNMP-Nginx反向代理

    Nginx反向代理 Nginx提供反向代理的模块http proxy,这个模块是默认的,不需要重新编译模块.通常情况下,Nginx代理一般常用的环境是,提供web服务的服务器放在内网,暴露在外网上容易 ...

  4. 【ES6基础】let、const命令和变量的结构赋值

    ES5声明变量(2):var .function ES6声明变量(6):var.function.let.const.import和class 1.let命令和const命令 (1)let和const ...

  5. eclipse配置svn导出项目

    eclipse安装svn 菜单栏help-->eclipse marketspace-->find中搜索subclipse,安装-->ok windows-->show vie ...

  6. DHCP服务相关实验

    一.DHCP 相关介绍 1.dhcp服务相关 软件名: dhcp #DHCP服务软件包 dhcp-common #DHCP命令软件包(默认已安装) 服务名: dhcpd #DHCP服务名 dhcrel ...

  7. 红帽杯-MISC-Advertising for Marriage

    convert -flip screenshot.png screensho1.png 本篇结合我上一博客https://www.cnblogs.com/qq3285862072/p/11869403 ...

  8. B站上传字幕问题解决

    博客:blog.shinelee.me | 博客园 | CSDN B站上传字幕时,如果srt文件中出现如下空行,则会报错,仅上传了空行前的部分 于是写了个python脚本,如下: import pys ...

  9. 由于ie浏览器ajax缓存 导致layui table表格重载失败的解决办法

    where: { time:new Date()//增加一个数据接口的额外参数→时间戳 }

  10. centos7下MySQL5.7修改默存储路径

    安装MySQL中YUM默认安装路径是/var/lib/mysql下,有时候该目录分配的磁盘空间并不大,需要迁移到新的磁盘目录 df  -h 查看磁盘空间大小 本次迁移到 /home目录下 1.在hom ...