[算法模板]FFT-快速傅里叶变换

感谢ZYW聚聚为我们讲解FFT~

FFT

思路

我懒,思路和证明部分直接贴链接:

rvalue

LSJ-FFT与NTT基础

代码

主要思想是利用了单位根特殊的性质(n次单位根后一半幂跟前一半幂取值相等)。只是因为式子中奇数次幂还要提出来个\(\omega_n^k\),这个东西只要取个反就好了(即对称性:\(\omega_n^k=-\omega_n^{k+\frac{n}{2}}\))。

FFT递归:

#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=2e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
void fft(int l,comp *a,int f)
{
if(l==1) return;
comp a1[l>>1],a2[l>>1];
for(int i=0;i<l;i+=2)
{
a1[i>>1]=a[i];
a2[i>>1]=a[i+1];
}
fft(l>>1,a1,f); fft(l>>1,a2,f);
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)},w=(comp){1,0};
for(int i=0;i<(l>>1);i++,w=w*wn)
{
a[i]=a1[i]+w*a2[i];
a[i+(l>>1)]=a1[i]-w*a2[i];
}
}
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1; while(l<=n+m) l<<=1;
fft(l,a,1); fft(l,b,1);
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

因为其运行效率过低。我们一般使用迭代FFT。

FFT迭代:

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn=4*1e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int rev[maxn],rp;
void get_rev(int l)//l为位数,rev[i]代表i的二进制表示颠倒(二进制位有l位,不足补0)
{
for(int i=1;i<(1<<l);i++)
rev[i]=(rev[i>>1]>>1)|((1&i)<<l-1);
}
void fft(int len,comp *a,int f)
{
for(int i=1;i<len;i++)
if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int l=2;l<=len;l<<=1)//区间长度
{
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)};
for(int i=0;i+l<=len;i+=l)
{
comp w=(comp){1,0};
for(int k=i;k<i+(l>>1);k++,w=w*wn)
{
comp t=w*a[k+(l>>1)],tmp=a[k];
a[k]=tmp+t;
a[k+(l>>1)]=tmp-t;
}
}
}
}
//a[i]表示当x=单位根的i次方时y的值
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1,cnt=0; while(l<=n+m) l<<=1,cnt++;
get_rev(cnt);
fft(l,a,1); fft(l,b,1);//l是多项式项数
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}

NTT

啊我饿了我要吃NTT

直接粘一张钟神的PPT:

代码

预处理原根次幂:

for(int i=2;i<(1<<l);i<<=1) {//枚举单位根周期长度(即w_n的n)
int w0=Pow(3,(P-1)/i),w1=Pow(3,P-1-(P-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;//wn[f][i],i的最高位代表是几次单位根,其他位代表是第几个。这里求的是i的单位根,因为前一半i单位根等于i/2的单位根所以是存储在i/2的位置.(推式子的时候推过,长度为len时代入单位根周期为len/2)
for(int j=1;j<(i>>1);++j)//w_i单位根的j次方(因为折半了所以只用求一半)
wn[0][(i>>1)+j]=wn[0][(i>>1)+j-1]*(ll)w0%P,
wn[1][(i>>1)+j]=wn[1][(i>>1)+j-1]*(ll)w1%P;
}

[模板]分治FFT

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=998244353;
const int maxn=3e5+10;
typedef long long ll;
ll a[maxn],b[maxn],f[maxn],g[maxn],wn[2][maxn];
int n,rev[maxn];
int ksm(int num,int t){
int res=1;
for(;t;t>>=1,num=1ll*num*num%mod){
if(t&1)res=1ll*res*num%mod;
}
return res;
}
void get_rev(int len){for(int i=1;i<(1<<len);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));}
void get_wn(int len){
for(int i=2;i<=(1<<len);i<<=1){
ll w1=ksm(3,(mod-1)/i),w0=ksm(3,mod-1-(mod-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;
for(int j=1;j<(i>>1);j++){
wn[0][j+(i>>1)]=wn[0][j+(i>>1)-1]*w0%mod;
wn[1][j+(i>>1)]=wn[1][j+(i>>1)-1]*w1%mod;
}
}
}
void NTT(int len,ll *c,int f){
for(int i=0;i<len;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int l=2;l<=len;l<<=1){
for(int i=0;i+l<=len;i+=l){
for(int k=i;k<i+(l>>1);k++){
ll tmp1=c[k],tmp2=wn[f][k+(l>>1)-i]*c[k+(l>>1)];
c[k]=(tmp1+tmp2)%mod;
c[k+(l>>1)]=(tmp1-tmp2+mod)%mod;
}
}
}
}
void cdq(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq(l,mid);
int cnt=0,len=1;while(len<=(r-l-1))len<<=1,cnt++;
for(int i=0;i<len;i++)a[i]=b[i]=0;
for(int i=0;i<=mid-l;i++)a[i]=f[i+l];
for(int i=0;i<=r-l-1;i++)b[i]=g[i+1];
// memset(rev,0,sizeof(rev));
get_rev(cnt);
NTT(len,a,1);NTT(len,b,1);
for(int i=0;i<len;i++)a[i]=a[i]*b[i]%mod;
NTT(len,a,0);
ll inv=ksm(len,mod-2);
for(int i=0;i<len;i++)a[i]=a[i]*inv%mod;
for(int i=mid+1;i<=r;i++)f[i]+=a[i-l-1],f[i]%=mod;
cdq(mid+1,r);
}
int main(){
f[0]=1;
scanf("%d",&n);get_wn(18);
for(int i=1;i<n;i++)scanf("%lld",&g[i]);
cdq(0,n-1);
for(int i=0;i<n;i++)printf("%lld ",(f[i]%mod+mod)%mod);
return 0;
}

[算法模板]FFT-快速傅里叶变换的更多相关文章

  1. 模板 FFT 快速傅里叶变换

    FFT模板,原理不难,优质讲解很多,但证明很难看太不懂 这模板题在bzoj竟然是土豪题,服了 #include <cmath> #include <cstdio> #inclu ...

  2. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. FFT快速傅里叶变换算法

    1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换 ...

  6. 「算法笔记」快速傅里叶变换(FFT)

    一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...

  7. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  8. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  9. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

随机推荐

  1. Callable接口实现线程

    public class CallableDemo { public static void main(String[] args) throws Exception, ExecutionExcept ...

  2. linux 各目录 常用用处

    /bin : 存储常 用用户指令 /boot : 存储 核心.模块 映像等启 动用文件/dev : 存储 设备文件/etc : 存储 系统. 服 务的配置目录 与 文件/home : 存放 个人主目录 ...

  3. Cmder介绍和配置

    一.命令行神器cmder介绍 windows上做开发,不管是cmd还是powershell,似乎都不够美观,不够强大.今天就来介绍一款可以替代cmd的神器"Cmder",话不多说, ...

  4. JS基础知识——原型与原型链

    1.如何准确判断一个变量的数组类型 2.写一个原型链继承的例子 3.描述new一个对象的过程 4.zepto(或其他框架中如何使用原型链) 知识点: (1)构造函数 function Foo(name ...

  5. Spring Cloud第十一篇 | 分布式配置中心高可用

    ​ 本文是Spring Cloud专栏的第十一篇文章,了解前十篇文章内容有助于更好的理解本文: Spring Cloud第一篇 | Spring Cloud前言及其常用组件介绍概览 Spring Cl ...

  6. 比较typeof与instanceof

    相同点: JavaScript中typeof和instanceof常用来判断一个变量是否为空,或者是什么类型的. 不同点: typeof的定义和用法: 返回值是一个字符串,用来说明变量的数据类型. 细 ...

  7. 常见问题解决办法=》.net后台

    1:后台返回前端长度过大的问题 除了在web.config中设置最大值外还可以修改返回值  [web.config中配置最大值有时候无效,直接修改返回值效果会好一些] List<User> ...

  8. Python面向对象-多重继承之MixIN

    以Animal类为例,假设要实现以下4种动物: Dog(狗).Bat(蝙蝠).Parrot(鹦鹉)和Ostrich(鸵鸟) 如果按照哺乳类和鸟类来区分的话,可以这样设计: Animal: |--Mam ...

  9. Springboot vue.js html 跨域 前后分离 shiro权限 集成代码生成器

    本代码为 Springboot vue.js  前后分离 + 跨域 版本 (权限控制到菜单和按钮) 后台框架:springboot2.1.2+ mybaits+maven+接口 前端页面:html + ...

  10. 解决在IE11浏览器下,JQuery的AJAX方法不响应问题

    在项目的时候一直都是在使用谷歌浏览器在调试,后来在现场部署到服务器上的时候,客户使用的是IE浏览器,版本是11 在测试的过程中,出现几个问题,虽然是几个问题,但是问题的原因就是AJAX第一次响应,第二 ...