特征的匹配大致可以分为3个步骤:

  1. 特征的提取
  2. 计算特征向量
  3. 特征匹配

对于3个步骤,在OpenCV2中都进行了封装。所有的特征提取方法都实现FeatureDetector接口,DescriptorExtractor接口则封装了对特征向量(特征描述符)的提取,而所有特征向量的匹配都继承了DescriptorMatcher接口。

简单的特征匹配

int main()
{
const string imgName1 = "x://image//01.jpg";
const string imgName2 = "x://image//02.jpg"; Mat img1 = imread(imgName1);
Mat img2 = imread(imgName2); if (!img1.data || !img2.data)
return -1; //step1: Detect the keypoints using SURF Detector
int minHessian = 400; SurfFeatureDetector detector(minHessian); vector<KeyPoint> keypoints1, keypoints2; detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2); //step2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors1, descriptors2;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2); //step3:Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_L2);
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2,matches); //Draw matches
Mat imgMatches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches); namedWindow("Matches");
imshow("Matches", imgMatches); waitKey(); return 0;
}

 

  1. 实例化了一个特征提取器SurfFeatureDetector,其构造函数参数(minHessian)用来平衡提取到的特征点的数量和特征提取的稳定性的,对于不同的特征提取器改参数具有不同的含义和取值范围。
  2. 对得到的特征点提取特征向量(特征描述符)
  3. 匹配,上面代码使用了暴力匹配的方法,最后的匹配结果保存在vector<DMatch>中。

DMatch用来保存匹配后的结果

 

struct DMatch
{ //三个构造函数
DMatch() :
queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(std::numeric_limits<float>::max()) {}
DMatch(int _queryIdx, int _trainIdx, float _distance) :
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {}
DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {}
int queryIdx; //此匹配对应的查询图像的特征描述子索引
int trainIdx; //此匹配对应的训练(模板)图像的特征描述子索引
int imgIdx; //训练图像的索引(若有多个)
float distance; //两个特征向量之间的欧氏距离,越小表明匹配度越高。
bool operator < (const DMatch &m) const;
};

 

然后使用drawMatches方法可以匹配后的结构保存为Mat

OpenCV2简单的特征匹配的更多相关文章

  1. OpenCV2:特征匹配及其优化

    在OpenCV2简单的特征匹配中对使用OpenCV2进行特征匹配的步骤做了一个简单的介绍,其匹配出的结果是非常粗糙的,在这篇文章中对使用OpenCV2进行匹配的细化做一个简单的总结.主要包括以下几个内 ...

  2. OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

    一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...

  3. opencv学习之路(34)、SIFT特征匹配(二)

    一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...

  4. 利用SIFT进行特征匹配

    SIFT算法是一种基于尺度空间的算法.利用SIFT提取出的特征点对旋转.尺度变化.亮度变化具有不变性,对视角变化.仿射变换.噪声也有一定的稳定性. SIFT实现特征的匹配主要包括四个步骤: 提取特征点 ...

  5. OpenCV-Python sift/surf特征匹配与显示

    import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 ...

  6. OpenCV-Python 特征匹配 | 四十四

    目标 在本章中, 我们将看到如何将一个图像中的特征与其他图像进行匹配. 我们将在OpenCV中使用Brute-Force匹配器和FLANN匹配器 Brute-Force匹配器的基础 蛮力匹配器很简单. ...

  7. OpenCV 之 特征匹配

    OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 Descriptor ...

  8. 特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释

    特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式 ...

  9. (三)ORB特征匹配

    ORBSLAM2匹配方法流程 在基于特征点的视觉SLAM系统中,特征匹配是数据关联最重要的方法.特征匹配为后端优化提供初值信息,也为前端提供较好的里程计信息,可见,若特征匹配出现问题,则整个视觉SLA ...

随机推荐

  1. ASP.NET中基本语言特性

    自动属性 public string Name { get; set; } 对象与集合的初始化 //自动推断类型//集合的初始化 var Products=new List<Product> ...

  2. Java中@Override的作用

    @Override是伪代码,表示重写(当然不写也可以),不过写上有如下好处: 1.可以当注释用,方便阅读:2.编译器可以给你验证@Override下面的方法名是否是你父类中所有的,如果没有则报错.例如 ...

  3. HDU1039-Easier Done Than Said?(字符串处理)

    一,题意: 判断三个条件 1:有元音字母 2:不能三个连续元音或辅音 3:不能连续两个相同的字母,除非ee或oo二,思路 写函数一个条件一个条件去判断 #include<iostream> ...

  4. eclipse 下找不到或无法加载主类的解决办法

    有时候 Eclipse 会发神经,好端端的 project 就这么编译不了了,连 Hello World 都会报“找不到或无法加载主类”的错误,我已经遇到好几次了,以前是懒得深究就直接重建projec ...

  5. 在C#代码中应用Log4Net(三)Log4Net中配置文件的解释

    一个完整的配置文件的例子如下所示,这个是”在C#代码中应用Log4Net(二)”中使用的配置文件. <log4net> <!-- 错误日志类--> <logger nam ...

  6. .NET实现微博粉丝服务平台接口

    [文章摘要]Senparc.Weixin.MP虽然是微信公众号的SDK,但由于易信公众号和新浪微博粉丝服务平台也提供了微信兼容接口,所以也可以使用其快速实现相应的服务,当然微博由于与微信存在差异,如果 ...

  7. Atitit 分区后的查询  mysql分区记录的流程与原理

    Atitit 分区后的查询  mysql分区记录的流程与原理 1.1.1. ibd是MySQL数据文件.索引文件1 1.2. 已经又数据了,如何分区? 给已有的表加上分区 ]1 1.3. 分成4个区, ...

  8. .Net中List<T> 泛型转成DataTable、DataSet

    在开发过程过程中有时候需要将List<T>泛型转换成DataTable.DataSet,可以利用反射机制将DataTable的字段与自定义类型的公开属性互相赋值. 1.List<T& ...

  9. Java集合类的组织结构和继承、实现关系

    Collection继承.实现关系如下(说明(I)表示接口,(C)表示Java类,<--表示继承,<<--表示实现): (I)Iterable |<--(I)Collectio ...

  10. 一个美术需求引发的Custom Inspector

    需求 Editor模式下,在运行或者非运行状态下,能够按照指定的变化率来自动改变material中属性数值. 需求分析 如何在Editor模式下获得一个游戏对象及其组件,尤其是在非运行状态下?我们知道 ...