Problem

In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. Cells number i and i+1 are adjacent, and prisoners in adjacent cells are called "neighbours." A wall with a window separates adjacent cells, and neighbours can communicate through that window.

All prisoners live in peace until a prisoner is released. When that happens, the released prisoner's neighbours find out, and each communicates this to his other neighbour. That prisoner passes it on to hisother neighbour, and so on until they reach a prisoner with no other neighbour (because he is in cell 1, or in cell P, or the other adjacent cell is empty). A prisoner who discovers that another prisoner has been released will angrily break everything in his cell, unless he is bribed with a gold coin. So, after releasing a prisoner in cell A, all prisoners housed on either side of cell A - until cell 1, cell P or an empty cell - need to be bribed.

Assume that each prison cell is initially occupied by exactly one prisoner, and that only one prisoner can be released per day. Given the list of Q prisoners to be released in Q days, find the minimum total number of gold coins needed as bribes if the prisoners may be released in any order.

Note that each bribe only has an effect for one day. If a prisoner who was bribed yesterday hears about another released prisoner today, then he needs to be bribed again.

Input

The first line of input gives the number of cases, NN test cases follow. Each case consists of 2 lines. The first line is formatted as

P Q

where P is the number of prison cells and Q is the number of prisoners to be released. 
This will be followed by a line with Q distinct cell numbers (of the prisoners to be released), space separated, sorted in ascending order.

Output

For each test case, output one line in the format

Case #X: C

where X is the case number, starting from 1, and C is the minimum number of gold coins needed as bribes.

Limits

1 ≤ N ≤ 100
Q ≤ P
Each cell number is between 1 and P, inclusive.

Large dataset

1 ≤ P ≤ 10000
1 ≤ Q ≤ 100

Sample

Input 
 
Output 
 
2
8 1
3
20 3
3 6 14
Case #1: 7
Case #2: 35

Note

In the second sample case, you first release the person in cell 14, then cell 6, then cell 3. The number of gold coins needed is 19 + 12 + 4 = 35. If you instead release the person in cell 6 first, the cost will be 19 + 4 + 13 = 36.

题解:

  区间dp水题,套路状态dp[l][r]表示将l到r的点全部搞完的最小代价,因为这个状态转移会重复所以考虑加一个限制条件,不包括两个端点。

  那么我们就套路枚举断点,暴力转移,dp[l][r]=min(dp[l][k]+dp[k][r]+w[r]-w[l]-2)减去2是因为不算端点,要加两个关键点0和n,答案就是dp[0][n](因为不考虑端点),我是写的记忆化搜索,自然一点,如果for的话先枚举一个len就可以了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define ll long long
#define MAXN 500
using namespace std;
int n,q,a[MAXN],w[MAXN],b[MAXN][MAXN];
ll dp[MAXN][MAXN]; ll dfs(int l,int r){
if(b[l][r]) return dp[l][r];
if(l+==r) return ;
b[l][r]=;
ll tmp=<<;
for(int i=l+;i<=r;i++){
tmp=min(tmp,dfs(l,i)+dfs(i,r)+w[r]-w[l]-);
}
dp[l][r]=tmp;
return tmp;
} int main()
{
int t;cin>>t;int Case=;
while(t--){
scanf("%d%d",&n,&q);
memset(b,,sizeof(b));
memset(dp,,sizeof(dp));
memset(a,,sizeof(a));
memset(w,,sizeof(w));
for(int i=;i<=q;i++) scanf("%d",&a[i]);
a[++q]=,a[++q]=n+;
sort(a+,a+q+);
for(int i=;i<=q;i++) w[i]=a[i];
int k=unique(w+,w+q+)-w-;
for(int i=;i<=q;i++) a[i]=lower_bound(w+,w+k+,a[i])-w;
printf("Case #%d: %lld\n",++Case,dfs(,k));
}
return ;
}

Bribe the Prisoners SPOJ - GCJ1C09C的更多相关文章

  1. GCJ1C09C - Bribe the Prisoners

    GCJ1C09C - Bribe the Prisoners Problem In a kingdom there are prison cells (numbered 1 to P) built t ...

  2. spoj GCJ1C09C Bribe the Prisoners

    题目链接: http://www.spoj.com/problems/GCJ1C09C/ 题意: In a kingdom there are prison cells (numbered 1 to  ...

  3. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  4. 贿赂囚犯 Bribe the prisoners ( 动态规划+剪枝)

    一个监狱里有P个并排着的牢房,从左往右一次编号为1,2,-,P.最初所有牢房里面都住着一个囚犯.现在要释放一些囚犯.如果释放某个牢房里的囚犯,必须要贿赂两边所有的囚犯一个金币,直到监狱的两端或者空牢房 ...

  5. GCJ Round 1C 2009 Problem C. Bribe the Prisoners

    区间DP.dp[i][j]表示第i到第j个全部释放最小费用. #include<cstdio> #include<cstring> #include<cmath> ...

  6. spoj14846 Bribe the Prisoners

    看来我还是太菜了,这么一道破题做了那么长时间...... 传送门 分析 我首先想到的是用状压dp来转移每一个人是否放走的状态,但是发现复杂度远远不够.于是我们考虑区间dp,dpij表示i到j区间的所有 ...

  7. ProgrammingContestChallengeBook

    POJ 1852 Ants POJ 2386 Lake Counting POJ 1979 Red and Black AOJ 0118 Property Distribution AOJ 0333 ...

  8. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  9. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

随机推荐

  1. 【Offer】[8] 【中序遍历的下一个结点】

    题目描述 思路分析 Java代码 代码链接 题目描述 给定一棵二叉树和其中的一个结点,如何找出中序遍历顺序的下一个结点? 树中的结点除了有两个分别指向左右子结点的指针以外,还有一个指向父结点的指针. ...

  2. 那些年,我们误解的 JavaScript 闭包

    说到闭包,大部分的初始者,都是谈虎色变的.最近对闭包,有了自己的理解,就感觉.其实我们误解闭包.也被网上各种说的闭包的解释给搞迷糊. 一句话:要想理解一个东西还是看权威的东西. 下面我来通俗的讲解一个 ...

  3. Java复习:集合框架(一张图)

    最后一个看不见了补充一下: ConcurrentHashMap:是线程安全的(基于lock实现的,同步的时候锁住的不是整个对象,而加了synchronized的是锁住了整个的对象),实现了Map接口, ...

  4. 解决SSM框架中,存储到mysql数据库中乱码问题的究极方案

    因为编码格式不匹配的问题,设置了好多遍,都不行,就试着让所有的编码格式保持一致.然后读取.插入数据库再也不乱码了. 数据库编码格式必须和myeclipse编码格式一致 其次依次让以下各文件的编码格式保 ...

  5. 二分练习题3 查找小于x的最大元素 题解

    题目描述 现在告诉你一个长度为 \(n\) 的有序数组 \(a_1, a_2, ..., a_n\) ,以及 \(q\) 次询问,每次询问会给你一个数 \(x\) ,对于每次询问,你需要输出数组 \( ...

  6. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  7. [LeetCode] 由 “分形" 所想

    分形思想和递归思想有区别么? 一.简单例子 函数调用自己,简化了理解逻辑,但其他到处都是问题. #%% def listsum(numList): if len(numList) == 1: retu ...

  8. Spring事务传播行为中可能的坑点

    一.简介 Spring事务配置及相关说明详见:https://www.cnblogs.com/eric-fang/p/11052304.html.这里说明spring事务的几点注意: 1.默认只会检查 ...

  9. Intellij IDEA 2019 + Java Spring MVC + Hibernate学习笔记(2)

    书接上文 首先根据各种Spring MVC教程,建立了基础的结构,是否合理不知道,姑且先这样,有问题再解决问题.学习新东西,不能怕掉坑里... 查询网上别人的经历说需要把根目录下的lib目录下的所有包 ...

  10. web前端开发面试题(附答案)-2

    1.label是什么标签,有什么作用?和for属性使用的作用? label标签来定义表单控制间的关系,当用户选择该标签时,浏览器会自动将焦点转到和标签相关的表单控件上. label 元素不会向用户呈现 ...