Problem

In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. Cells number i and i+1 are adjacent, and prisoners in adjacent cells are called "neighbours." A wall with a window separates adjacent cells, and neighbours can communicate through that window.

All prisoners live in peace until a prisoner is released. When that happens, the released prisoner's neighbours find out, and each communicates this to his other neighbour. That prisoner passes it on to hisother neighbour, and so on until they reach a prisoner with no other neighbour (because he is in cell 1, or in cell P, or the other adjacent cell is empty). A prisoner who discovers that another prisoner has been released will angrily break everything in his cell, unless he is bribed with a gold coin. So, after releasing a prisoner in cell A, all prisoners housed on either side of cell A - until cell 1, cell P or an empty cell - need to be bribed.

Assume that each prison cell is initially occupied by exactly one prisoner, and that only one prisoner can be released per day. Given the list of Q prisoners to be released in Q days, find the minimum total number of gold coins needed as bribes if the prisoners may be released in any order.

Note that each bribe only has an effect for one day. If a prisoner who was bribed yesterday hears about another released prisoner today, then he needs to be bribed again.

Input

The first line of input gives the number of cases, NN test cases follow. Each case consists of 2 lines. The first line is formatted as

P Q

where P is the number of prison cells and Q is the number of prisoners to be released. 
This will be followed by a line with Q distinct cell numbers (of the prisoners to be released), space separated, sorted in ascending order.

Output

For each test case, output one line in the format

Case #X: C

where X is the case number, starting from 1, and C is the minimum number of gold coins needed as bribes.

Limits

1 ≤ N ≤ 100
Q ≤ P
Each cell number is between 1 and P, inclusive.

Large dataset

1 ≤ P ≤ 10000
1 ≤ Q ≤ 100

Sample

Input 
 
Output 
 
2
8 1
3
20 3
3 6 14
Case #1: 7
Case #2: 35

Note

In the second sample case, you first release the person in cell 14, then cell 6, then cell 3. The number of gold coins needed is 19 + 12 + 4 = 35. If you instead release the person in cell 6 first, the cost will be 19 + 4 + 13 = 36.

题解:

  区间dp水题,套路状态dp[l][r]表示将l到r的点全部搞完的最小代价,因为这个状态转移会重复所以考虑加一个限制条件,不包括两个端点。

  那么我们就套路枚举断点,暴力转移,dp[l][r]=min(dp[l][k]+dp[k][r]+w[r]-w[l]-2)减去2是因为不算端点,要加两个关键点0和n,答案就是dp[0][n](因为不考虑端点),我是写的记忆化搜索,自然一点,如果for的话先枚举一个len就可以了。

代码:

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define ll long long
#define MAXN 500
using namespace std;
int n,q,a[MAXN],w[MAXN],b[MAXN][MAXN];
ll dp[MAXN][MAXN]; ll dfs(int l,int r){
if(b[l][r]) return dp[l][r];
if(l+==r) return ;
b[l][r]=;
ll tmp=<<;
for(int i=l+;i<=r;i++){
tmp=min(tmp,dfs(l,i)+dfs(i,r)+w[r]-w[l]-);
}
dp[l][r]=tmp;
return tmp;
} int main()
{
int t;cin>>t;int Case=;
while(t--){
scanf("%d%d",&n,&q);
memset(b,,sizeof(b));
memset(dp,,sizeof(dp));
memset(a,,sizeof(a));
memset(w,,sizeof(w));
for(int i=;i<=q;i++) scanf("%d",&a[i]);
a[++q]=,a[++q]=n+;
sort(a+,a+q+);
for(int i=;i<=q;i++) w[i]=a[i];
int k=unique(w+,w+q+)-w-;
for(int i=;i<=q;i++) a[i]=lower_bound(w+,w+k+,a[i])-w;
printf("Case #%d: %lld\n",++Case,dfs(,k));
}
return ;
}

Bribe the Prisoners SPOJ - GCJ1C09C的更多相关文章

  1. GCJ1C09C - Bribe the Prisoners

    GCJ1C09C - Bribe the Prisoners Problem In a kingdom there are prison cells (numbered 1 to P) built t ...

  2. spoj GCJ1C09C Bribe the Prisoners

    题目链接: http://www.spoj.com/problems/GCJ1C09C/ 题意: In a kingdom there are prison cells (numbered 1 to  ...

  3. Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)

    Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...

  4. 贿赂囚犯 Bribe the prisoners ( 动态规划+剪枝)

    一个监狱里有P个并排着的牢房,从左往右一次编号为1,2,-,P.最初所有牢房里面都住着一个囚犯.现在要释放一些囚犯.如果释放某个牢房里的囚犯,必须要贿赂两边所有的囚犯一个金币,直到监狱的两端或者空牢房 ...

  5. GCJ Round 1C 2009 Problem C. Bribe the Prisoners

    区间DP.dp[i][j]表示第i到第j个全部释放最小费用. #include<cstdio> #include<cstring> #include<cmath> ...

  6. spoj14846 Bribe the Prisoners

    看来我还是太菜了,这么一道破题做了那么长时间...... 传送门 分析 我首先想到的是用状压dp来转移每一个人是否放走的状态,但是发现复杂度远远不够.于是我们考虑区间dp,dpij表示i到j区间的所有 ...

  7. ProgrammingContestChallengeBook

    POJ 1852 Ants POJ 2386 Lake Counting POJ 1979 Red and Black AOJ 0118 Property Distribution AOJ 0333 ...

  8. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  9. SPOJ DQUERY D-query(主席树)

    题目 Source http://www.spoj.com/problems/DQUERY/en/ Description Given a sequence of n numbers a1, a2, ...

随机推荐

  1. lambda表达式与匿名内部类与双冒号(::)

    lambda表达式在只有一条代码时还可以引用其他方法或构造器并自动调用,可以省略参数传递,代码更加简洁,引用方法的语法需要使用::符号.lambda表达式提供了四种引用方法和构造器的方式: 引用对象的 ...

  2. Spring boot出现Cannot determine embedded database driver class for database type NONE

    在spring boot项目中,我们在pom.xml文件中添加了mysql和mybatis的依赖,我们常常遇到下面这样的问题: Description: Cannot determine embedd ...

  3. 获取不到jdbc.driver的值解决办法

    我存在的问题是: 1.先检查自己是否出错 ①首先想到mysql版本和驱动版本之间的冲突问题,我的mysql是5.5.56,驱动用的5.1.32,上网查了一下可以用,但还是尝试换了一个版本的驱动,还是出 ...

  4. 搭建Nuget服务器(Nuget私服)

    一.前言 对公司或者对个人来说,经过一段时间的沉淀之后,都会有一些框架或者模块,为了对这些框架或者模块进行更好的管理和维护,也为了方便后面的开发或者其他同事,我们可以在我们本地或者内网搭建一个Nuge ...

  5. FreeSql (十八)导航属性

    导航属性是 FreeSql 的特色功能之一,可通过约定配置.或自定义配置对象间的关系. 导航属性有 OneToMany, ManyToOne, ManyToMany, OneToOne, Parent ...

  6. 【新】mybatis中大于等于小于等于的两种常用写法

    mybatis中大于等于小于等于的写法 原符号 < <= > >= & ' " 替换符号 < <= > >= & &a ...

  7. Winform中实现ZedGraph曲线图的图像复制到剪切板、打印预览、获取图片并保存、另存为的功能

    场景 Winforn中设置ZedGraph曲线图的属性.坐标轴属性.刻度属性: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...

  8. C# HTTP网络常用方法封装

    using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Regi ...

  9. SpringCloud(五)Zuul网关与分布式配置中心

    在 Spring Cloud 微服务系统中,一种常见的负载均衡方式是,客户端的请求首先经过负载均衡(Ngnix),再到达服务网关(Zuul 集群),然后再到具体的服务.服务统一注册到高可用的服务注册中 ...

  10. java架构之路-(设计模式)五种创建型模式之单例模式

    设计模式自身一直不是很了解,但其实我们时刻都在使用这些设计模式的,java有23种设计模式和6大原则. 设计模式是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了可 ...