基于Spark的电影推荐系统(推荐系统~2)
第四部分-推荐系统-数据ETL
- 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去
前置准备:
spark +hive
vim $SPARK_HOME/conf/hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>hive.metastore.uris</name>
<value>thrift://hadoop001:9083</value>
</property>
</configuration>
- 启动Hive metastore server
[root@hadoop001 conf]# nohup hive --service metastore &
[root@hadoop001 conf]# netstat -tanp | grep 9083
tcp 0 0 0.0.0.0:9083 0.0.0.0:* LISTEN 24787/java
[root@hadoop001 conf]#
测试:
[root@hadoop001 ~]# spark-shell --master local[2]
scala> spark.sql("select * from liuge_db.dept").show;
+------+-------+-----+
|deptno| dname| loc|
+------+-------+-----+
| 1| caiwu| 3lou|
| 2| renli| 4lou|
| 3| kaifa| 5lou|
| 4|qiantai| 1lou|
| 5|lingdao|4 lou|
+------+-------+-----+
==》保证Spark SQL 能够访问到Hive 的元数据才行。
然而我们采用的是standalone模式:需要启动master worker
[root@hadoop001 sbin]# pwd
/root/app/spark-2.4.3-bin-2.6.0-cdh5.7.0/sbin
[root@hadoop001 sbin]# ./start-all.sh
[root@hadoop001 sbin]# jps
26023 Master
26445 Worker
Spark常用端口
8080 spark.master.ui.port Master WebUI
8081 spark.worker.ui.port Worker WebUI
18080 spark.history.ui.port History server WebUI
7077 SPARK_MASTER_PORT Master port
6066 spark.master.rest.port Master REST port
4040 spark.ui.port Driver WebUI
这个时候打开:http://hadoop001:8080/
开始项目Coding
IDEA+Scala+Maven进行项目的构建
步骤一: 新建scala项目后,可以参照如下pom进行配置修改
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.csylh</groupId>
<artifactId>movie-recommend</artifactId>
<version>1.0</version>
<inceptionYear>2008</inceptionYear>
<properties>
<scala.version>2.11.8</scala.version>
<spark.version>2.4.3</spark.version>
</properties>
<repositories>
<repository>
<id>scala-tools.org</id>
<name>Scala-Tools Maven2 Repository</name>
<url>http://scala-tools.org/repo-releases</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.1.1</version>
</dependency>
<!--// 0.10.2.1-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.39</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
<build>
<!--<sourceDirectory>src/main/scala</sourceDirectory>-->
<!--<testSourceDirectory>src/test/scala</testSourceDirectory>-->
<plugins>
<plugin>
<!-- see http://davidb.github.com/scala-maven-plugin -->
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.1.3</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.13</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<!-- If you have classpath issue like NoDefClassError,... -->
<!-- useManifestOnlyJar>false</useManifestOnlyJar -->
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
</plugins>
</build>
</project>
步骤二:新建com.csylh.recommend.dataclearer.SourceDataETLApp
import com.csylh.recommend.entity.{Links, Movies, Ratings, Tags}
import org.apache.spark.sql.{SaveMode, SparkSession}
/**
* Description:
* hadoop001 file:///root/data/ml/ml-latest 下的文件
* ====> SparkSQL ETL
* ===> load data to Hive数据仓库
*
* @Author: 留歌36
* @Date: 2019-07-12 13:48
*/
object SourceDataETLApp{
def main(args: Array[String]): Unit = {
// 面向SparkSession编程
val spark = SparkSession.builder()
// .master("local[2]")
.enableHiveSupport() //开启访问Hive数据, 要将hive-site.xml等文件放入Spark的conf路径
.getOrCreate()
val sc = spark.sparkContext
// 设置RDD的partitions 的数量一般以集群分配给应用的CPU核数的整数倍为宜, 4核8G ,设置为8就可以
// 问题一:为什么设置为CPU核心数的整数倍?
// 问题二:数据倾斜,拿到数据大的partitions的处理,会消耗大量的时间,因此做数据预处理的时候,需要考量会不会发生数据倾斜
val minPartitions = 8
// 在生产环境中一定要注意设置spark.sql.shuffle.partitions,默认是200,及需要配置分区的数量
val shuffleMinPartitions = "8"
spark.sqlContext.setConf("spark.sql.shuffle.partitions",shuffleMinPartitions)
/**
* 1
*/
import spark.implicits._
val links = sc.textFile("file:///root/data/ml/ml-latest/links.txt",minPartitions) //DRIVER
.filter(!_.endsWith(",")) //EXRCUTER
.map(_.split(",")) //EXRCUTER
.map(x => Links(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toInt)) //EXRCUTER
.toDF()
println("===============links===================:",links.count())
links.show()
// 把数据写入到HDFS上
links.write.mode(SaveMode.Overwrite).parquet("/tmp/links")
// 将数据从HDFS加载到Hive数据仓库中去
spark.sql("drop table if exists links")
spark.sql("create table if not exists links(movieId int,imdbId int,tmdbId int) stored as parquet")
spark.sql("load data inpath '/tmp/links' overwrite into table links")
/**
* 2
*/
val movies = sc.textFile("file:///root/data/ml/ml-latest/movies.txt",minPartitions)
.filter(!_.endsWith(","))
.map(_.split(","))
.map(x => Movies(x(0).trim.toInt, x(1).trim.toString, x(2).trim.toString))
.toDF()
println("===============movies===================:",movies.count())
movies.show()
// 把数据写入到HDFS上
movies.write.mode(SaveMode.Overwrite).parquet("/tmp/movies")
// 将数据从HDFS加载到Hive数据仓库中去
spark.sql("drop table if exists movies")
spark.sql("create table if not exists movies(movieId int,title String,genres String) stored as parquet")
spark.sql("load data inpath '/tmp/movies' overwrite into table movies")
/**
* 3
*/
val ratings = sc.textFile("file:///root/data/ml/ml-latest/ratings.txt",minPartitions)
.filter(!_.endsWith(","))
.map(_.split(","))
.map(x => Ratings(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toDouble, x(3).trim.toInt))
.toDF()
println("===============ratings===================:",ratings.count())
ratings.show()
// 把数据写入到HDFS上
ratings.write.mode(SaveMode.Overwrite).parquet("/tmp/ratings")
// 将数据从HDFS加载到Hive数据仓库中去
spark.sql("drop table if exists ratings")
spark.sql("create table if not exists ratings(userId int,movieId int,rating Double,timestamp int) stored as parquet")
spark.sql("load data inpath '/tmp/ratings' overwrite into table ratings")
/**
* 4
*/
val tags = sc.textFile("file:///root/data/ml/ml-latest/tags.txt",minPartitions)
.filter(!_.endsWith(","))
.map(x => rebuild(x)) // 注意这个坑的解决思路
.map(_.split(","))
.map(x => Tags(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toString, x(3).trim.toInt))
.toDF()
tags.show()
// 把数据写入到HDFS上
tags.write.mode(SaveMode.Overwrite).parquet("/tmp/tags")
// 将数据从HDFS加载到Hive数据仓库中去
spark.sql("drop table if exists tags")
spark.sql("create table if not exists tags(userId int,movieId int,tag String,timestamp int) stored as parquet")
spark.sql("load data inpath '/tmp/tags' overwrite into table tags")
}
/**
* 该方法是用于处理不符合规范的数据
* @param input
* @return
*/
private def rebuild(input:String): String ={
val a = input.split(",")
val head = a.take(2).mkString(",")
val tail = a.takeRight(1).mkString
val tag = a.drop(2).dropRight(1).mkString.replaceAll("\"","")
val output = head + "," + tag + "," + tail
output
}
}
再有一些上面主类引用到的case 对象,你可以理解为Java 实体类
package com.csylh.recommend.entity
/**
* Description: 数据的schema
*
* @Author: 留歌36
* @Date: 2019-07-12 13:46
*/
case class Links(movieId:Int,imdbId:Int,tmdbId:Int)
package com.csylh.recommend.entity
/**
* Description: TODO
*
* @Author: 留歌36
* @Date: 2019-07-12 14:09
*/
case class Movies(movieId:Int,title:String,genres:String)
package com.csylh.recommend.entity
/**
* Description: TODO
*
* @Author: 留歌36
* @Date: 2019-07-12 14:10
*/
case class Ratings(userId:Int,movieId:Int,rating:Double,timestamp:Int)
package com.csylh.recommend.entity
/**
* Description: TODO
*
* @Author: 留歌36
* @Date: 2019-07-12 14:11
*/
case class Tags(userId:Int,movieId:Int,tag:String,timestamp:Int)
步骤三:将创建的项目进行打包上传到服务器
mvn clean package -Dmaven.test.skip=true
[root@hadoop001 ml]# ll -h movie-recommend-1.0.jar
-rw-r--r--. 1 root root 156K 10月 20 13:56 movie-recommend-1.0.jar
[root@hadoop001 ml]#
步骤四:提交运行上面的jar,编写shell脚本
[root@hadoop001 ml]# vim etl.sh
export HADOOP_CONF_DIR=/root/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop
$SPARK_HOME/bin/spark-submit
--class com.csylh.recommend.dataclearer.SourceDataETLApp
--master spark://hadoop001:7077
--name SourceDataETLApp
--driver-memory 10g
--executor-memory 5g
/root/data/ml/movie-recommend-1.0.jar
步骤五:sh etl.sh 即可
先把数据写入到HDFS上
创建Hive表
load 数据到表
sh etl.sh之前:
[root@hadoop001 ml]# hadoop fs -ls /tmp
19/10/20 19:26:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwx------ - root supergroup 0 2019-04-01 16:27 /tmp/hadoop-yarn
drwx-wx-wx - root supergroup 0 2019-04-02 09:33 /tmp/hive
[root@hadoop001 ml]# hadoop fs -ls /user/hive/warehouse
19/10/20 19:27:03 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[root@hadoop001 ml]#
sh etl.sh之后:
这里的shell 是 ,spark on standalone,后面会spark on yarn。其实也没差,都可以
[root@hadoop001 ~]# hadoop fs -ls /tmp
19/10/20 19:43:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 6 items
drwx------ - root supergroup 0 2019-04-01 16:27 /tmp/hadoop-yarn
drwx-wx-wx - root supergroup 0 2019-04-02 09:33 /tmp/hive
drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /tmp/links
drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /tmp/movies
drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /tmp/ratings
drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /tmp/tags
[root@hadoop001 ~]# hadoop fs -ls /user/hive/warehouse
19/10/20 19:43:32 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 4 items
drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /user/hive/warehouse/links
drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /user/hive/warehouse/movies
drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /user/hive/warehouse/ratings
drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /user/hive/warehouse/tags
[root@hadoop001 ~]#
这样我们就把数据etl到我们的数据仓库里了,接下来,基于这份基础数据做数据加工
有任何问题,欢迎留言一起交流~~
更多文章:基于Spark的电影推荐系统:https://blog.csdn.net/liuge36/column/info/29285
基于Spark的电影推荐系统(推荐系统~2)的更多相关文章
- 基于Spark的电影推荐系统(电影网站)
第一部分-电影网站: 软件架构: SpringBoot+Mybatis+JSP 项目描述:主要实现电影网站的展现 和 用户的所有动作的地方 技术选型: 技术 名称 官网 Spring Boot 容器 ...
- 基于Spark的电影推荐系统(实战简介)
写在前面 一直不知道这个专栏该如何开始写,思来想去,还是暂时把自己对这个项目的一些想法 和大家分享 的形式来展现.有什么问题,欢迎大家一起留言讨论. 这个项目的源代码是在https://github. ...
- 基于Spark的电影推荐系统(推荐系统~4)
第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说 ...
- 基于Spark的电影推荐系统(推荐系统~7)
基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. ...
- 基于Spark的电影推荐系统(推荐系统~1)
第四部分-推荐系统-项目介绍 行业背景: 快速:Apache Spark以内存计算为核心 通用 :一站式解决各个问题,ADHOC SQL查询,流计算,数据挖掘,图计算 完整的生态圈 只要掌握Spark ...
- 基于Spark的电影推荐系统
数据文件: u.data(userid itemid rating timestamp) u.item(主要使用 movieid movietitle) 数据操作 把u.data导入RDD, t ...
- 基于Mahout的电影推荐系统
基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域 ...
- 基于pytorch的电影推荐系统
本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movie ...
- 数据算法 --hadoop/spark数据处理技巧 --(9.基于内容的电影推荐 10. 使用马尔科夫模型的智能邮件营销)
九.基于内容的电影推荐 在基于内容的推荐系统中,我们得到的关于内容的信息越多,算法就会越复杂(设计的变量更多),不过推荐也会更准确,更合理. 本次基于评分,提供一个3阶段的MR解决方案来实现电影推荐. ...
随机推荐
- JavaScript和JQuery进行页面跳转
1.JavaScript页面跳转 .我们可以利用http的重定向来跳转 window.location.replace("网址"); .使用href来跳转 window.locat ...
- Oracle之select
坚持
- 31 (OC)* 内存管理
31 (OC) 内存管理 一:内存管理黄金法则. 如果对一个对象使用了alloc.[Mutable]copy,retain,那么你必须使用相应的realease或者autorelease 二:内存管 ...
- [VB.NET Tips]再谈字符串连接之内置池
CLR自动维护一个称为"内置池"(暂存池)(intern pool)的表,在编译时此表包含程序中声明的每个唯一的字符串常量的单个实例,以及以编程方式创建的String类的任何唯一实 ...
- [Linux][函数]flock函数的用法
表头文件 #include<sys/file.h> 定义函数 int flock(int fd,int operation); 函数说明 flock()会依参数operation所指 ...
- hadoop集群zookeeper迁移
1. zookeeper作用 ZooKeepr在Hadoop中的应用主要有: 1.1 HDFS中NameNode的HA和YARN中ResourceManager的HA. 1.2 存储RMStateSt ...
- 第八届蓝桥杯java b组第二题
标题:纸牌三角形 A,2,3,4,5,6,7,8,9 共9张纸牌排成一个正三角形(A按1计算).要求每个边的和相等. 下图就是一种排法(如有对齐问题,参看p1.png). A ...
- 远古框架-SSH maven配置 (包含gson)
Spring3.2.17+Struts2.3.15+Hibernate3.6.10 <?xml version="1.0" encoding="UTF-8" ...
- TCP/IP 物理层卷一 -- 基本概念
一.基本概念: 物理层:TCP/IP 协议簇的最底层,物理层所需要考虑的是如何在连接计算机的传输媒体上传输数据的比特流,而不是连接计算机的具体物理设备. 信号:数据的电气或电磁表现,是数据在传输媒体上 ...
- Dubbo学习系列之九(Shiro+JWT权限管理)
村长让小王给村里各系统来一套SSO方案做整合,隔壁的陈家村流行使用Session+认证中心方法,但小王想尝试点新鲜的,于是想到了JWT方案,那JWT是啥呢?JavaWebToken简称JWT,就是一个 ...