方法一:直观来看,遍历1到n,每个数去做%10的循环判断

  int Number1_B_1toN( int n){
int sum=0;
for(int i=1;i<=n;i++){
int k=i;
while(k!=0){
if(k%10==1)
sum++;
k/=10;         
}
}
return sum;
}

方法二:无需遍历每一个数,只对最大的位数进行分解,就是当前位*高位的数字+当前低位数字范围中,当前位为1的数量

如 32629;当前为6,百位 。32*100+(0到629中百位为1的数量 =100)

对于 n = 2134,要找到从1 ~ 2134这2134个数字中所有1的个数。我们可以对2134进行逐位分析:
(1)在个位上,从1~2130,包含213个10,因此数字1出现了213次,剩下的数字2131、2132、2133、2134中个位数上只有2131包含树脂字1,剩下的都不包含。所以个位数上的数字1的总数为213 + 1 = 214
(2)在十位上,从1 ~ 2100,包含了21个100,因此数字1出现了21 * 10 = 210次,剩下的数字从2101 ~ 2134,只有2110 ~ 2119这10个数字中十位的数字为1,所以十位上的数字1的总数为210 + 10 = 220
(3)在百位上,从1 ~ 2000,包含了2个1000,因此数字1出现了2 * 100 = 200次,剩下的数字从2001 ~ 2134,只有2100 ~ 2134这35个数字中的百位的数字为1,所以百位数上数字1的总数为200 + 35= 235。
(4)在千位上,包含了0个10000,因此数字1出现了0 * 1000 = 0次,剩下的数字中只有1000 ~ 1999这1000个数字中的千位的数字为1,所以千位上的数字1的总数为1000。因此从1 ~ 2134这n个数字中,数字出现的总的次数为214 + 220 + 235 +1000 = 1669

 int NumberOfDigitOne(int n) {
if( n < 0)
return 0;
int i = 1; //从个位开始,10的1次方级别
int high = n; //
int cnt = 0;
while(high != 0)
{
high = n / pow(10 ,i);//high表示当前位的高位
int temp = n / pow(10, i - 1);
int cur = temp % 10;//cur表示第i位上的值,从1开始计算
int low = n  - temp * pow(10, i - 1);//low表示当前位的低位
if(cur < 1)
{
cnt += high * pow(10, i - 1);
// 比如120;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位0,0就达不到1;就12个
}
else if(cur > 1)
{
cnt += (high + 1) * pow(10 ,i - 1); 
// 比如125;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位5,1到5有一个1;就13个
}
else
{
cnt += high * pow(10, i - 1);
cnt += (low + 1);
// 比如120;i=1;hight=12;那就就有12个10;每个10有1个1,就有12个,在加当前位0,0就达不到1;就12个
}
i++;
}
return cnt;
} int pow(int k, int i2) {
         k=1;
              for(int i=1;i<=i2;i++)
                  k*=10;
     return k;
}

面试题四十三:在1~n整数中1出现的次数的更多相关文章

  1. 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)

    问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...

  2. 面试题32.从1到n整数中1出现的次数

    题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从 1到12这些整数中包含1的数字中1,10,11和12,1一共出现了5次 本题可以直接变量1到n的n个数然后分别计 ...

  3. 《剑指offer》第四十三题(从1到n整数中1出现的次数)

    // 面试题43:从1到n整数中1出现的次数 // 题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如 // 输入12,从1到12这些整数中包含1 的数字有1,10,11和12 ...

  4. 【面试题032】从1到n整数中1出现的次数

    [面试题032]从1到n整数中1出现的次数 题目:     输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.     例如输入12,从1到12这些整数中包含1的数字有1,10,11和1 ...

  5. 【剑指offer】面试题32:从1到n整数中1出现的次数

    题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了.A ...

  6. 《剑指offer》面试题32----从1到n整数中1出现的次数

    题目:输入一个整数n,求从1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11和12,1一共出现了5次. 解法一:不考虑时间效率的解法(略) ps ...

  7. 剑指offer-面试题43-1~n整数中1出现的次数-归纳法

    /* 题目: 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? 为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没 ...

  8. 九度OJ 1373 整数中1出现的次数(从1到n整数中1出现的次数)

    题目地址:http://ac.jobdu.com/problem.php?pid=1373 题目描述: 亲们!!我们的外国友人YZ这几天总是睡不好,初中奥数里有一个题目一直困扰着他,特此他向JOBDU ...

  9. 32:从1到n整数中1出现的次数

    import java.util.Arrays; /** * 面试题32:从1到n整数中1出现的次数 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数? * 为此他特别数了 ...

  10. 剑指offer-第五章优化时间和空间效率(从1到n的整数中1出现的次数)

    题目:输入一个整数n,从1到n这n个十进制整数中1出现的次数. 思路1:对1到n中的任意一个数i对其进行求余数来判断个位是否为1,然后再求除数,判断十位是否为1.统计出1的个数.然后对1到n用一个循环 ...

随机推荐

  1. ajax前后端交互原理(1)

    1.Node.js简介 1.1.前后台数据交互流程 在web开发中,我们经常听说前端和后台,他们分别是做什么具体工作的呢?他们怎样交互的呢?我们得把这些基础的问题都搞明白了,才有一个大致的学习方向,首 ...

  2. CF819B Mister B and PR Shifts 思维题

    分析 这道题\(n\leq10^{6}\),显然\(n^{2}\)的暴力是无法解决问题的 那么我们可以考虑数列的某一种性质 因为最终的答案是\(\sum{n \atop i=1} |p_i - i|\ ...

  3. mysql逗号分隔问题

    1.说明: 之前写了一个发先了有点问题, 用正则去匹配的会匹配多了数据,所以优化下 媒资表(asset_baseinfo)里面有地区,如下,如果一个节目包含多个地区,id存在如下 地区表(produc ...

  4. mysql中给查询结果添加序号

    当我们想为查询结果添加序号的时候可以这样写 SELECT @rowid:=@rowid+1 allid, pan_number, receive_person,time_note, url,unit_ ...

  5. 微信小程序中的深拷贝与浅拷贝问题

    最近在弄小程序项目的时候遇到了一个json对象复制的问题,也就是俗称的深拷贝与浅拷贝了. 一般用变量直接接收就是浅拷贝,那么如何理解浅拷贝与深拷贝的意义呢? 浅拷贝:只是将对象地址的复制,并没有开辟新 ...

  6. MySQL入门(引擎、数据类型、约束)

    MySQL入门(二) 表的引擎:驱动数据的方式 - 数据库优化 # 概要:引擎是建表规定的,提供给表使用,不是数据库的 # 展示所有引擎 show engines; # innodb(默认): 支持事 ...

  7. MCU 51-3定时器

    51定时/计数器简介 51单片机有2个16位定时器/计数器:定时器0(T0为P3.4)和定时器1(T1为P3.5).这里所说的16位是指定时/计数器内部分别有16位的计数寄存器. 当工作在定时模式时, ...

  8. Python pip 国内镜像大全及使用办法

    Python pip 国内镜像大全及使用办法 一.国内镜像 清华 https://pypi.tuna.tsinghua.edu.cn/simple 豆瓣 pip install -i http://p ...

  9. Django框架07 /cookie和session

    Django框架07 /cookie和session 目录 Django框架07 /cookie和session 1. django请求生命周期 2. cookie 3. session 4. 总结 ...

  10. unity-疑难杂症(一)

    1.使用odin插件序列化,当出现预制体有引用类型的关联, 拖到scene就没关联时,可右键预制体--Reimport解决. 2.类似问题1,脚本组件关联AudioMixer,拖到scene没有关联, ...