金字塔卷积:Pyramidal Convolution
论文地址:https://arxiv.org/pdf/2006.11538.pdf
github:https://github.com/iduta/pyconv
作者认为,当前CNN主要存在两个不足:(1)实际的感受野不足;(2)在下采样中,很多的细节信息会丢失。

从图中可以看出,有的物体尺寸较大(建筑、沙发),有的物体尺寸较小(行人,书本)。这种尺寸的变化是标准卷积级经捕获的。为此,作者提出了金字塔卷积(Pyramid Convolution, PyConv),包含不同尺度的卷积核,可以提取多尺度信息,在多个任务上均取得了较好的性能

PyConv 的示意如图所示,直观来看,就是从上往下卷积核的大小依次减小,同时,在通道维度上,通道的数目依次增加。最后将得到的 feature map 拼接起来。

在图像分类任务中的 PyConv 示意所图所示,首先是9X9的卷积,16个卷积核,分为16组,因此生成16X16=256个 feature map;然后是7X7的卷积,16个卷积核,分为8组,因此生成16X8=128个 feature map;接着是5X5的卷积,16个卷积核,分为4组,因此生成16X4=64个 feature map;最后是3X3的卷积,16个卷积核,只有1组,因此生成16X1=16个 feature map。然后,会用1X1的卷积来使输出的维度都为 256。
备汪:关于分组卷积,网上有一个比较形象的图示。对于普通卷积,如果输入的 feature map 尺寸为CHW, 卷积核的数量为N,每个卷积核的尺寸为CxKxK,那么输出的 feature map 尺寸为 CHN,总的参数量为:NxCxKxK 。
如果进行分组卷积,假定要分成 G 组,每组输入的 feature map 数量为 \(\frac{C}{G}\),每组输出的 feature map 数量为 \(\frac{N}{G}\),每个卷积核的尺寸为\(\frac{C}{G}\times K\times K\), 每组的卷积核数量为 \(\frac{N}{G}\),卷积核只与同组的输入进行卷积,则总的参数量为 \(N\times \frac{C}{G} \times K \times K\),则总的参数量减少为以前的 \(\frac{1}{G}\)。
当分组数量等于输入map数量,输出map数量也等于输入map的数量,即 G=N=C,每个卷积核尺寸为\(1\times K \times K\)时,就成了 Depthwise convolution。

金字塔卷积 PyConv,通过集成不同尺度的卷积核,提升了多个视觉任务的性能,同时,该模块是一种“即插即用”的模块,可以较好的嵌入不同的网络架构中。
金字塔卷积:Pyramidal Convolution的更多相关文章
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 卷积(convolution)与相关(correlation)(matlab 实现)
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3 ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...
- 转置卷积Transposed Convolution
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值 ...
- 信号处理——卷积(convolution)的实现
作者:桂. 时间:2017-03-07 22:33:37 链接:http://www.cnblogs.com/xingshansi/p/6517301.html 前言 信号时域.频域对应关系,及其D ...
- 各种卷积类型Convolution
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...
- [翻译] 扩张卷积 (Dilated Convolution)
英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...
随机推荐
- spring boot 和shiro的代码实战demo
spring boot和shiro的代码实战 首先说明一下,这里不是基础教程,需要有一定的shiro知识,随便百度一下,都能找到很多的博客叫你基础,所以这里我只给出代码. 官方文档:http://sh ...
- Codeforces Round #652 (Div. 2) 总结
A:问正n边形的一条边和x轴平行的时候有没有一条边和y轴重合,直接判断n是否是4的倍数 #include <iostream> #include <cstdio> #inclu ...
- zabbix4.4安装
本安装操作系统为centos7.5. 安装前准备: 1.1 安装依赖包: yum -y install wget net-snmp-devel OpenIPMI-devel httpd openssl ...
- 平时自己常用的git指令
增删改查 创建标签 $ git tag -a v1.4 -m 'my version 1.4' 用 -a (译注:取 annotated 的首字母)指定标签名字即可 -m 选项则指定了对应的标签说明 ...
- hive中left semi join 与join 的区别
LEFT SEMI JOIN:左半开连接会返回左边表的记录,前提是其记录对于右边表满足ON语句中的判定条件.对于常见的内连接(INNER JOIN),这是一个特殊的,优化了的情况.大多数的SQL方言会 ...
- 注册中心(Eureka/Consul)
基于SpringBoot1.5.4与SpringCloud(Dalston.SR2)的SpringCloud学习博客,转载请标明出处,O(∩_∩)O谢谢 - Spring Cloud简介 Spring ...
- spark | 手把手教你用spark进行数据预处理
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第七篇文章,我们一起看看spark的数据分析和处理. 过滤去重 在机器学习和数据分析当中,对于数据的了解和熟悉都是最基 ...
- 关于使用swagger的问题
近来在公司实现,接触到不少新的工具框架,今天见识到了一个新的工具,它的存在好像是情理之中的,但是以前就没有遇到这东西.那就是swagger,它的功能就是把你写的controller的内容都集合到一起方 ...
- 使用vs2019加.net core 对WeiApi的创建
vs2019创建webapi 1.创建新的项目 2.选择.NET CORE的ASP .NET CORE WEB应用程序 3.定义项目名称和存放地点 4.选择API创建项目 5.删除原本的无用的类 6. ...
- 《The Google File System》论文研读
GFS 论文总结 说明:本文为论文 <The Google File System> 的个人总结,难免有理解不到位之处,欢迎交流与指正 . 论文地址:GFS Paper 阅读此论文的过程中 ...