第2章 RDD编程(2.3)

2.3 TransFormation

基本RDD

Pair类型RDD

(伪集合操作  交、并、补、笛卡尔积都支持)

2.3.1 map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

package com.diyo.funtion

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} /**
* map(func)
* 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
*/
object mapDemo extends App {
/*map(func)
返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
scala> var source = sc.parallelize(1 to 10)
source: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at <console>:24 scala> source.collect()
res7: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) scala> val mapadd = source.map(_ * 2)
mapadd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at map at <console>:26 scala> mapadd.collect()
res8: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20) --------------------------------------------------------------------------------------------------- map 是对 RDD 中的每个元素都执行一个指定的函数来产生一个新的 RDD
任何 原 RDD 中的元素在新 RDD 中都有且只有一个元素与之对应。
举例:
scala>val a=sc.parallelize(1 to 9,3)
scala>val b=a.map(x=>x*2)
scala>a.collect res10:Array[Int]=Array(1,2,3,4,5,6,7,8,9)
scala>b.collect res11:Array[Int]=Array(2,4,6,8,10,12,14,16,18)
上述例子中把原 RDD 中每个元素都乘以 2 来产生一个新的 RDD。 */ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_map")
val sc = new SparkContext(conf) val a: RDD[Int] = sc.parallelize(1 to 9 ,3)
val b = a.map(x=>{
println("map")
x*2
})
a.foreach(println)
println("a的分区数:"+a.partitions.size)
println(b.collect().mkString("")) }

2.3.2 mapPartitions(func) 尽量使用mapPartitions

类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]。假设有N个元素,有M个分区,那么map的函数的将被调用N次,而mapPartitions被调用M次,一个函数一次处理所有分区

package com.diyo.funtion

/**
* mapPartitions(func) 尽量使用mapPartitions
* 类似于map,但独立地在RDD的每一个分片上运行,
* 因此在类型为T的RDD上运行时,
* func的函数类型必须是Iterator[T] => Iterator[U]
* 假设有N个元素,有M个分区,那么map的函数的将被调用N次,
* 而mapPartitions被调用M次,一个函数一次处理所有分区
*/
object mapPartitionsDemo extends App{ /*
mapPartitions(func)
scala> val rdd = sc.parallelize( List( ("kpop","female") , ("zorro","male") , ("mobin","male") , ("lucy","female") ))
rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[16] at parallelize at <console>:24 scala> :paste
// Entering paste mode (ctrl-D to finish)
def partitionsFun(iter : Iterator[(String,String)]) : Iterator[String] = {
var woman = List[String]()
while (iter.hasNext){
val next = iter.next()
next match {
case (_,"female") => woman = next._1 :: woman
case _ =>
}
}
woman.iterator
}
// Exiting paste mode, now interpreting. partitionsFun: (iter: Iterator[(String, String)])Iterator[String] scala> val result = rdd.mapPartitions(partitionsFun)
result: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[17] at mapPartitions at <console>:28 scala> result.collect()
res13: Array[String] = Array(kpop, lucy) ------------------------------------------------------------
mapPartitions 是 map 的一个变种。
map 的输入函数是应用于 RDD 中每个元素,
而 mapPartitions 的输入函数是应用于每个分区,
也就是把每个分区中的内容作 为整体来处理的。
它的函数定义为:
def mapPartitions[U: ClassTag](f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean=false):RDD[U]
f 即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以 Iterator[T] 传递给输入函数 f, f 的输出结果是 Iterator[U]
最终的 RDD 由所有分区经过输入 函数处理后的结果合并起来的。
举例:
scala>val a=sc.parallelize(1 to 9,3)
scala>def myfuncT:Iterator[(T,T)]={
var res=List(T,T)
var pre=iter.next
while(iter.hasNext){
val cur=iter.next
res.::=(pre,cur)
pre=cur }
res.iterator }
scala>a.mapPartitions(myfunc).collect
res0:Array[(Int,Int)]=Array((2,3),(1,2),(5,6),(4,5),(8,9),(7,8))
上述例子中的函数myfunc是把分区中一个元素和它的下一个元素组成一个Tuple。 因为分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。 mapPartitions 还有些变种,比如 mapPartitionsWithContext,它能把处理过程中的 一些状态信息传递给用户指定的输入函数。还有 mapPartitionsWithIndex,它能 把分区的 index传递给用户指定的输入函数。
*/
}

  

2.3.3 glom

将每一个分区形成一个数组,形成新的RDD类型时RDD[Array[T]]

scala> val rdd = sc.parallelize(1 to 16,4)

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[65] at parallelize at <console>:24

scala> rdd.glom().collect()

res25: Array[Array[Int]] = Array(Array(1, 2, 3, 4), Array(5, 6, 7, 8), Array(9, 10, 11, 12), Array(13, 14, 15, 16))

2.3.4 flatMap(func) map后再扁平化

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

package com.diyo.funtion

import org.apache.spark.{SparkConf, SparkContext}

/**
* flatMap(func) map后再扁平化
* 类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
*/
object flatMapDemo extends App { /*
scala> val sourceFlat = sc.parallelize(1 to 5)
sourceFlat: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at parallelize at <console>:24 scala> sourceFlat.collect()
res11: Array[Int] = Array(1, 2, 3, 4, 5) scala> val flatMap = sourceFlat.flatMap(1 to _)
flatMap: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[13] at flatMap at <console>:26 scala> flatMap.collect()
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5)
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_flatMap")
val sc = new SparkContext(conf) val sourceFlat = sc.parallelize(1 to 5)
val flatMap = sourceFlat.flatMap(1 to _) //(x => (1 to x))
println(flatMap.collect().mkString(""))
}  

2.3.5 filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

package com.diyo.funtion

import org.apache.spark.{SparkConf, SparkContext}

/**
* filter(func)
* 返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成
*/
object filterDemo extends App { /*返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成
scala> var sourceFilter = sc.parallelize(Array("xiaoming","xiaojiang","xiaohe","dazhi"))
sourceFilter: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[10] at parallelize at <console>:24 scala> val filter = sourceFilter.filter(_.contains("xiao"))
filter: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at filter at <console>:26 scala> sourceFilter.collect()
res9: Array[String] = Array(xiaoming, xiaojiang, xiaohe, dazhi) scala> filter.collect()
res10: Array[String] = Array(xiaoming, xiaojiang, xiaohe) --------------------------------------------------------
filter 是对 RDD 中的每个元素都执行一个指定的函数来过滤产生一个新的 RDD。
任何原 RDD 中的元素在新 RDD 中都有且只有一个元素与之对应。
val rdd=sc.parallelize(List(1,2,3,4,5,6))
val filterRdd=rdd.filter(_>5)
filterRdd.collect()//返回所有大于 5 的数据的一个 Array, Array(6,8,10,12)
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_flatMap")
val sc = new SparkContext(conf) val rdd = sc.parallelize(List(1, 2, 3, 4, 5, 6))
val filterRdd = rdd.filter(x => x > 5)
println(filterRdd.collect().mkString(""))

2.3.6 mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]

package com.diyo.funtion

import org.apache.spark.{SparkConf, SparkContext}

/**
* mapPartitionsWithIndex(func)
* 类似于mapPartitions,但func带有一个整数参数表示分片的索引值,
* 因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]
*/
object mapPartitionsWithIndexDemo extends App { /*
类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U]
scala> val rdd = sc.parallelize(List(("kpop","female"),("zorro","male"),("mobin","male"),("lucy","female")))
rdd: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[18] at parallelize at <console>:24 scala> :paste
// Entering paste mode (ctrl-D to finish)
def partitionsFun(index : Int, iter : Iterator[(String,String)]) : Iterator[String] = {
var woman = List[String]()
while (iter.hasNext){
val next = iter.next()
next match {
case (_,"female") => woman = "["+index+"]"+next._1 :: woman
case _ =>
}
}
woman.iterator
}
// Exiting paste mode, now interpreting. partitionsFun: (index: Int, iter: Iterator[(String, String)])Iterator[String] scala> val result = rdd.mapPartitionsWithIndex(partitionsFun)
result: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[19] at mapPartitionsWithIndex at <console>:28 scala> result.collect()
res14: Array[String] = Array([0]kpop, [3]lucy) ----------------------------------------------
def mapPartitionsWithIndex[U](f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning:Boolean=false)(implicitarg0:ClassTag[U]):RDD[U]
函数作用同 mapPartitions,不过提供了两个参数,第一个参数为分区的索引。
var rdd1 = sc.makeRDD(1 to 5,2) //rdd1 有两个分区
var rdd2=rdd1.mapPartitionsWithIndex{
(x,iter)=>{
var result = ListString
var i=0
while(iter.hasNext){
i+=iter.next() }
result.::(x+"|"+i).iterator
}
} //rdd2 将 rdd1 中每个分区的数字累加,并在每个分区的累加结果前面加了分区 索引
scala>rdd2.collect
res13:Array[String]=Array(0|3,1|12)
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_mapPartitionsWithIndex")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Array(1,2,3,4,5,6),2) val a = rdd.mapPartitionsWithIndex((x,y) => Iterator(x+":"+y.mkString(""))) //(x,y) x为分区号,y为分区中内容
println(a.collect().mkString(",")) //0:123,1:456 } 

2.3.7 sample(withReplacement, fraction, seed)

以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样,seed用于指定随机数生成器种子。例子从RDD中随机且有放回的抽出50%的数据,随机种子值为3(即可能以1 2 3的其中一个起始值)

package com.diyo.funtion

import org.apache.spark.{SparkConf, SparkContext}

/**
* sample(withReplacement, fraction, seed)
* withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样,
* 以指定的随机种子随机抽样出数量为fraction的数据,
* seed用于指定随机数生成器种子。
* 例子从RDD中随机且有放回的抽出50%的数据,随机种子值为3(即可能以1 2 3的其中一个起始值)
* sample算子时用来抽样用的,其有3个参数
*
* withReplacement:表示抽出样本后是否在放回去,true表示会放回去,这也就意味着抽出的样本可能有重复
*
* fraction :抽出多少,这是一个double类型的参数,0-1之间,eg:0.3表示抽出30%
*
* seed:表示一个种子,根据这个seed随机抽取,一般情况下只用前两个参数就可以,
* 那么这个参数是干嘛的呢,这个参数一般用于调试,有时候不知道是程序出问题还是数据出了问题,就可以将这个参数设置为定值
*/
object sampleDemo extends App { /*
scala> val rdd = sc.parallelize(1 to 10)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at <console>:24 scala> rdd.collect()
res15: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) scala> var sample1 = rdd.sample(true,0.4,2)
sample1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[21] at sample at <console>:26 scala> sample1.collect()
res16: Array[Int] = Array(1, 2, 2, 7, 7, 8, 9) scala> var sample2 = rdd.sample(false,0.2,3)
sample2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[22] at sample at <console>:26 scala> sample2.collect()
res17: Array[Int] = Array(1, 9)
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_sample")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(1 to 10)
val a = rdd.sample(true,0.3)
println(a.collect().mkString("")) }

2.3.8 distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD. 默认情况下,只有8个并行任务来操作,但是可以传入一个可选的numTasks参数改变它。

package com.diyo.funtion

import org.apache.spark.{SparkConf, SparkContext}

/**
* distinct([numTasks]))
* 对源RDD进行去重后返回一个新的RDD. 默认情况下,只有8个并行任务来操作,但是可以传入一个可选的numTasks参数改变它。
*/
object distinctDemo extends App { /*
scala> val distinctRdd = sc.parallelize(List(1,2,1,5,2,9,6,1))
distinctRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[34] at parallelize at <console>:24 scala> val unionRDD = distinctRdd.distinct()
unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[37] at distinct at <console>:26 scala> unionRDD.collect()
[Stage 16:> (0 + 4) [Stage 16:=============================> (2 + 2) res20: Array[Int] = Array(1, 9, 5, 6, 2) scala> val unionRDD = distinctRdd.distinct(2)
unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[40] at distinct at <console>:26 scala> unionRDD.collect()
res21: Array[Int] = Array(6, 2, 1, 9, 5) --------------------------------------------------------
distinct
去重
val rdd1 = sc.parallelize(List(5,6,4,3))
val rdd2 = sc.parallelize(List(1,2,3,4)) //求并集
val rdd3 = rdd1.union(rdd2) //去重输出
rdd3.distinct.collect
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_distinct")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Array(1,2,2,1,3,4,5,5,5,6)) val a = rdd.distinct()
// val a = rdd.distinct(2) //参数为Task数
println(a.collect().mkString("")) }

2.3.9 partitionBy

对RDD进行分区操作,如果原有的partionRDD和现有的partionRDD是一致的话就不进行分区, 否则会生成ShuffleRDD。

package com.diyo.funtion

import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

/**
* partitionBy
* 对RDD进行分区操作,如果原有的partionRDD和现有的partionRDD是一致的话就不进行分区, 否则会生成ShuffleRDD.
*/
object partitionByDemo extends App { /*
scala> val rdd = sc.parallelize(Array((1,"aaa"),(2,"bbb"),(3,"ccc"),(4,"ddd")),4)
rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[44] at parallelize at <console>:24 scala> rdd.partitions.size
res24: Int = 4 scala> var rdd2 = rdd.partitionBy(new org.apache.spark.HashPartitioner(2))
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[45] at partitionBy at <console>:26 scala> rdd2.partitions.size
res25: Int = 2
*/ val conf = new SparkConf().setMaster("local[*]").setAppName("dzy_partitionBy")
val sc = new SparkContext(conf)
val rdd = sc.parallelize(Array((1,"aaa"),(2,"bbb"),(3,"ccc"),(4,"ddd")))
println(rdd.collect().mkString(""))
val rdd2 = rdd.partitionBy(new HashPartitioner(2))
println(rdd2.collect().mkString(""))
}

2.3.10 coalesce(numPartitions) 

与repartition的区别: repartition(numPartitions:Int):RDD[T]和coalesce(numPartitions:Int,shuffle:Boolean=false):RDD[T] repartition只是coalesce接口中shuffle为true的实现.

缩减分区数,用于大数据集过滤后,提高小数据集的执行效率。

scala> val rdd = sc.parallelize(1 to 16,4)

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at <console>:24

scala> rdd.partitions.size

res20: Int = 4

scala> val coalesceRDD = rdd.coalesce(3)

coalesceRDD: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[55] at coalesce at <console>:26

scala> coalesceRDD.partitions.size

res21: Int = 3

2.3.11 repartition(numPartitions) 

根据分区数,从新通过网络随机洗牌所有数据。

scala> val rdd = sc.parallelize(1 to 16,4)

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[56] at parallelize at <console>:24

scala> rdd.partitions.size

res22: Int = 4

scala> val rerdd = rdd.repartition(2)

rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[60] at repartition at <console>:26

scala> rerdd.partitions.size

res23: Int = 2

scala> val rerdd = rdd.repartition(4)

rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[64] at repartition at <console>:26

scala> rerdd.partitions.size

res24: Int = 4

2.3.12 repartitionAndSortWithinPartitions(partitioner) 

repartitionAndSortWithinPartitions函数是repartition函数的变种,与repartition函数不同的是,repartitionAndSortWithinPartitions在给定的partitioner内部进行排序,性能比repartition要高。

2.3.13 sortBy(func,[ascending], [numTasks])

用func先对数据进行处理,按照处理后的数据比较结果排序。

scala> val rdd = sc.parallelize(List(1,2,3,4))

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[21] at parallelize at <console>:24

scala> rdd.sortBy(x => x).collect()

res11: Array[Int] = Array(1, 2, 3, 4)

scala> rdd.sortBy(x => x%3).collect()

res12: Array[Int] = Array(3, 4, 1, 2)

2.3.14 union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD  不去重

scala> val rdd1 = sc.parallelize(1 to 5)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at <console>:24

scala> val rdd2 = sc.parallelize(5 to 10)

rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at <console>:24

scala> val rdd3 = rdd1.union(rdd2)

rdd3: org.apache.spark.rdd.RDD[Int] = UnionRDD[25] at union at <console>:28

scala> rdd3.collect()

res18: Array[Int] = Array(1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10)

2.3.15 subtract (otherDataset)

计算差的一种函数,去除两个RDD中相同的元素,不同的RDD将保留下来

scala> val rdd = sc.parallelize(3 to 8)

rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[70] at parallelize at <console>:24

scala> val rdd1 = sc.parallelize(1 to 5)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[71] at parallelize at <console>:24

scala> rdd.subtract(rdd1).collect()

res27: Array[Int] = Array(8, 6, 7)

2.3.16 intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD

scala> val rdd1 = sc.parallelize(1 to 7)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[26] at parallelize at <console>:24

scala> val rdd2 = sc.parallelize(5 to 10)

rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:24

scala> val rdd3 = rdd1.intersection(rdd2)

rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[33] at intersection at <console>:28

scala> rdd3.collect()

res19: Array[Int] = Array(5, 6, 7)

2.3.17 cartesian(otherDataset)

笛卡尔积

scala> val rdd1 = sc.parallelize(1 to 3)

rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[47] at parallelize at <console>:24

scala> val rdd2 = sc.parallelize(2 to 5)

rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[48] at parallelize at <console>:24

scala> rdd1.cartesian(rdd2).collect()

res17: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5))

2.3.18 pipe(command, [envVars])

管道,对于每个分区,都执行一个perl或者shell脚本,返回输出的RDD

Shell脚本

#!/bin/sh

echo "AA"

while read LINE; do

echo ">>>"${LINE}

done

scala> val rdd = sc.parallelize(List("hi","Hello","how","are","you"),1)

rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[50] at parallelize at <console>:24

scala> rdd.pipe("/home/bigdata/pipe.sh").collect()

res18: Array[String] = Array(AA, >>>hi, >>>Hello, >>>how, >>>are, >>>you)

scala> val rdd = sc.parallelize(List("hi","Hello","how","are","you"),2)

rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[52] at parallelize at <console>:24

scala> rdd.pipe("/home/bigdata/pipe.sh").collect()

res19: Array[String] = Array(AA, >>>hi, >>>Hello, AA, >>>how, >>>are, >>>you)

pipe.sh:

#!/bin/sh

echo "AA"

while read LINE; do

echo ">>>"${LINE}

done

2.3.19 join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD

scala> val rdd = sc.parallelize(Array((1,"a"),(2,"b"),(3,"c")))

rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[32] at parallelize at <console>:24

scala> val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))

rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[33] at parallelize at <console>:24

scala> rdd.join(rdd1).collect()

res13: Array[(Int, (String, Int))] = Array((1,(a,4)), (2,(b,5)), (3,(c,6)))

2.3.20 cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

scala> val rdd = sc.parallelize(Array((1,"a"),(2,"b"),(3,"c")))

rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[37] at parallelize at <console>:24

scala> val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))

rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[38] at parallelize at <console>:24

scala> rdd.cogroup(rdd1).collect()

res14: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((1,(CompactBuffer(a),CompactBuffer(4))), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))

scala> val rdd2 = sc.parallelize(Array((4,4),(2,5),(3,6)))

rdd2: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[41] at parallelize at <console>:24

scala> rdd.cogroup(rdd2).collect()

res15: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((4,(CompactBuffer(),CompactBuffer(4))), (1,(CompactBuffer(a),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))

scala> val rdd3 = sc.parallelize(Array((1,"a"),(1,"d"),(2,"b"),(3,"c")))

rdd3: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[44] at parallelize at <console>:24

scala> rdd3.cogroup(rdd2).collect()

[Stage 36:>                                                         (0 + 0)                                                                             res16: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((4,(CompactBuffer(),CompactBuffer(4))), (1,(CompactBuffer(d, a),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer(c),CompactBuffer(6))))

2.3.21 reduceByKey(func, [numTasks]) 

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,reduce任务的个数可以通过第二个可选的参数来设置。

scala> val rdd = sc.parallelize(List(("female",1),("male",5),("female",5),("male",2)))

rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[46] at parallelize at <console>:24

scala> val reduce = rdd.reduceByKey((x,y) => x+y)

reduce: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[47] at reduceByKey at <console>:26

scala> reduce.collect()

res29: Array[(String, Int)] = Array((female,6), (male,7))

2.3.22 groupByKey

groupByKey也是对每个key进行操作,但只生成一个sequence。

scala> val words = Array("one", "two", "two", "three", "three", "three")

words: Array[String] = Array(one, two, two, three, three, three)

scala> val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))

wordPairsRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[4] at map at <console>:26

scala> val group = wordPairsRDD.groupByKey()

group: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[5] at groupByKey at <console>:28

scala> group.collect()

res1: Array[(String, Iterable[Int])] = Array((two,CompactBuffer(1, 1)), (one,CompactBuffer(1)), (three,CompactBuffer(1, 1, 1)))

scala> group.map(t => (t._1, t._2.sum))

res2: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[6] at map at <console>:31

scala> res2.collect()

res3: Array[(String, Int)] = Array((two,2), (one,1), (three,3))

scala> val map = group.map(t => (t._1, t._2.sum))

map: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[7] at map at <console>:30

scala> map.collect()

res4: Array[(String, Int)] = Array((two,2), (one,1), (three,3))

2.3.23 combineByKey[C]

(  createCombiner: V => C,  mergeValue: (C, V) => C,  mergeCombiners: (C, C) => C)

对相同K,把V合并成一个集合。

createCombiner: combineByKey() 会遍历分区中的所有元素,因此每个元素的键要么还没有遇到过,要么就 和之前的某个元素的键相同。如果这是一个新的元素,combineByKey() 会使用一个叫作 createCombiner() 的函数来创建 
那个键对应的累加器的初始值

mergeValue: 如果这是一个在处理当前分区之前已经遇到的键, 它会使用 mergeValue() 方法将该键的累加器对应的当前值与这个新的值进行合并

mergeCombiners: 由于每个分区都是独立处理的, 因此对于同一个键可以有多个累加器。如果有两个或者更多的分区都有对应同一个键的累加器, 就需要使用用户提供的 mergeCombiners() 方法将各个分区的结果进行合并。

scala> val scores = Array(("Fred", 88), ("Fred", 95), ("Fred", 91), ("Wilma", 93), ("Wilma", 95), ("Wilma", 98))

scores: Array[(String, Int)] = Array((Fred,88), (Fred,95), (Fred,91), (Wilma,93), (Wilma,95), (Wilma,98))

scala> val input = sc.parallelize(scores)

input: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[52] at parallelize at <console>:26

scala> val combine = input.combineByKey(

|     (v)=>(v,1),

|     (acc:(Int,Int),v)=>(acc._1+v,acc._2+1),

|     (acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2))

combine: org.apache.spark.rdd.RDD[(String, (Int, Int))] = ShuffledRDD[53] at combineByKey at <console>:28

scala> val result = combine.map{

|     case (key,value) => (key,value._1/value._2.toDouble)}

result: org.apache.spark.rdd.RDD[(String, Double)] = MapPartitionsRDD[54] at map at <console>:30

scala> result.collect()

res33: Array[(String, Double)] = Array((Wilma,95.33333333333333), (Fred,91.33333333333333))

2.3.24 aggregateByKey

(zeroValue:U,[partitioner: Partitioner]) (seqOp: (U, V) => U,combOp: (U, U) => U)

在kv对的RDD中,,按key将value进行分组合并,合并时,将每个value和初始值作为seq函数的参数,进行计算,返回的结果作为一个新的kv对,然后再将结果按照key进行合并,最后将每个分组的value传递给combine函数进行计算(先将前两个value进行计算,将返回结果和下一个value传给combine函数,以此类推),将key与计算结果作为一个新的kv对输出。

seqOp函数用于在每一个分区中用初始值逐步迭代value,combOp函数用于合并每个分区中的结果。

scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)

rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[12] at parallelize at <console>:24

scala> val agg = rdd.aggregateByKey(0)(math.max(_,_),_+_)

agg: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[13] at aggregateByKey at <console>:26

scala> agg.collect()

res7: Array[(Int, Int)] = Array((3,8), (1,7), (2,3))

scala> agg.partitions.size

res8: Int = 3

scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),1)

rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[10] at parallelize at <console>:24

scala> val agg = rdd.aggregateByKey(0)(math.max(_,_),_+_).collect()

agg: Array[(Int, Int)] = Array((1,4), (3,8), (2,3))

2.3.25 foldByKey

(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

aggregateByKey的简化操作,seqop和combop相同

scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)

rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[91] at parallelize at <console>:24

scala> val agg = rdd.foldByKey(0)(_+_)

agg: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[92] at foldByKey at <console>:26

scala> agg.collect()

res61: Array[(Int, Int)] = Array((3,14), (1,9), (2,3))

2.3.26 sortByKey([ascending], [numTasks]) 

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

scala> val rdd = sc.parallelize(Array((3,"aa"),(6,"cc"),(2,"bb"),(1,"dd")))

rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[14] at parallelize at <console>:24

scala> rdd.sortByKey(true).collect()

res9: Array[(Int, String)] = Array((1,dd), (2,bb), (3,aa), (6,cc))

scala> rdd.sortByKey(false).collect()

res10: Array[(Int, String)] = Array((6,cc), (3,aa), (2,bb), (1,dd))

2.3.27 mapValues

针对于(K,V)形式的类型只对V进行操作

scala> val rdd3 = sc.parallelize(Array((1,"a"),(1,"d"),(2,"b"),(3,"c")))

rdd3: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[67] at parallelize at <console>:24

scala> rdd3.mapValues(_+"|||").collect()

res26: Array[(Int, String)] = Array((1,a|||), (1,d|||), (2,b|||), (3,c|||))

第2章 RDD编程(2.3)的更多相关文章

  1. 第2章 RDD编程(2.1-2.2)

    第2章 RDD编程 2.1 编程模型 在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换.经过一系列的transformations定义RDD之后,就可以调用actions触发 ...

  2. Learning Spark中文版--第三章--RDD编程(2)

    Common Transformations and Actions   本章中,我们浏览了Spark中大多数常见的transformation(转换)和action(开工).在包含特定数据类型的RD ...

  3. Learning Spark中文版--第三章--RDD编程(1)

       本章介绍了Spark用于数据处理的核心抽象概念,具有弹性的分布式数据集(RDD).一个RDD仅仅是一个分布式的元素集合.在Spark中,所有工作都表示为创建新的RDDs.转换现有的RDD,或者调 ...

  4. 《Spark快速大数据分析》—— 第三章 RDD编程

  5. Spark学习笔记2:RDD编程

    通过一个简单的单词计数的例子来开始介绍RDD编程. import org.apache.spark.{SparkConf, SparkContext} object word { def main(a ...

  6. 2. RDD编程

    2.1 编程模型 在Spark中,RDD被表示为对象,通过对象上的方法调用来对RDD进行转换.经过一系列的transformations定义RDD之后,就可以调用actions触发RDD的计算,act ...

  7. 《深入浅出Node.js》第7章 网络编程

    @by Ruth92(转载请注明出处) 第7章 网络编程 Node 只需要几行代码即可构建服务器,无需额外的容器. Node 提供了以下4个模块(适用于服务器端和客户端): net -> TCP ...

  8. 《深入浅出Node.js》第4章 异步编程

    @by Ruth92(转载请注明出处) 第4章 异步编程 Node 能够迅速成功并流行起来的原因: V8 和 异步 I/O 在性能上带来的提升: 前后端 JavaScript 编程风格一致 一.函数式 ...

  9. Spark菜鸟学习营Day3 RDD编程进阶

    Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写 ...

随机推荐

  1. 面试题十七:打印从1到最大的n位数

    输入数字n,按顺序打印到最大的n位数 注意:没有规定类型,无论int或long 都会有可能溢出. 应当选择其他类型如String 方法一:定义长度与位数相同的字符数组,从0开始进行加一操作打印 pub ...

  2. Jenkins部署jmx脚本

      针对jenkins+jmeter做接口自动化,jmeter完成测试脚本录入和撰写,而jenkins负责持续集成和报告收集.那么从零实现jenkins可以从以下角度实现 首先需要安装jenkins ...

  3. 第三章 Java面向对象(下)

    3.1.抽象类 概述:在做子类共性功能抽取时,有些方法在父类中并没有具体的体现,这个时候就需要抽象类了 格式:public abstract class 类名 {} 语法特点: 抽象类和抽象方法必须使 ...

  4. Python爬虫开发与项目实战pdf电子书|网盘链接带提取码直接提取|

    Python爬虫开发与项目实战从基本的爬虫原理开始讲解,通过介绍Pthyon编程语言与HTML基础知识引领读者入门,之后根据当前风起云涌的云计算.大数据热潮,重点讲述了云计算的相关内容及其在爬虫中的应 ...

  5. Hexo 静态博客指南:建站教程(上)

    本文最初发布于我的个人博客Bambrow's Blog,采用 BY-NC-SA 许可协议,转载请注明出处.若有后续更新,将更新于原博客.欢迎去我的博客阅读更多文章! 本文详细记录一下站点建立过程,以便 ...

  6. PHP array_diff_ukey() 函数

    实例 比较两个数组的键名(使用用户自定义函数比较键名),并返回差集: <?phpfunction myfunction($a,$b){if ($a===$b){return 0;}return ...

  7. PHP curl_setopt_array函数

    (PHP 5 >= 5.1.3) curl_setopt_array — 为 cURL 传输会话批量设置选项. 说明 bool curl_setopt_array ( resource $ch ...

  8. PHP timezone_open() 函数

    ------------恢复内容开始------------ 实例 创建一个新的 DateTimeZone 对象,然后返回时区的名称: <?php$tz=timezone_open(" ...

  9. 程序人生丨听说程序员是相当就能当的?BAT大牛当场就不乐意了!

    有一种对软件开发者的偏见是:他们都是无趣的极客,是学校里的数学天才,每天都要在计算机屏幕前花费多个小时去写代码. 没错,开发者确实会在计算机屏幕前花费多个小时去写代码.但是,每天的工作中还有很多比写代 ...

  10. VMware 虚拟机开机黑屏解决方法

    # 调整VMware硬盘启动优先级 第一步:打开电源时进入固件,也就是BIOS 设置界面. 第二步:找到Main-最下面的Boot-time Diagnostic Screen,敲“Enter”,弹出 ...