题目:树网的核

网址:https://www.luogu.com.cn/problem/P1099

题目描述

设 T=(V,E,W)T=(V,E,W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称 TT 为树网(treenetwork),其中 VV,EE 分别表示结点与边的集合,WW 表示各边长度的集合,并设 TT 有 nn 个结点。

路径:树网中任何两结点 aa,bb 都存在唯一的一条简单路径,用 d(a, b)d(a,b) 表示以 a, ba,b 为端点的路径的长度,它是该路径上各边长度之和。我们称 d(a, b)d(a,b) 为 a, ba,b 两结点间的距离。

D(v, P)=\min{d(v, u)}D(v,P)=min{d(v,u)}, uu 为路径 PP 上的结点。

树网的直径:树网中最长的路径成为树网的直径。对于给定的树网 TT,直径不一定是唯一的,但可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。

偏心距 \mathrm{ECC}(F)ECC(F):树网 TT 中距路径 FF 最远的结点到路径 FF 的距离,即

\mathrm{ECC}(F)=\max{d(v, F),v \in V}ECC(F)=max{d(v,F),v∈V}

任务:对于给定的树网 \(T=(V, E, W)\) 和非负整数 \(s\),求一个路径 \(F\),他是某直径上的一段路径(该路径两端均为树网中的结点),其长度不超过 \(s\)(可以等于 \(s\)),使偏心距 \(ECC(F)\) 最小。我们称这个路径为树网 \(T=(V, E, W)\) 的核(Core)。必要时,\(F\) 可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但最小偏心距是唯一的。

下面的图给出了树网的一个实例。图中,\(A-B\) 与 \(A-C\) 是两条直径,长度均为 \(20\)。点 \(W\) 是树网的中心,\(EF\) 边的长度为 \(5\)。如果指定 \(s=11\),则树网的核为路径\(DEFG\)(也可以取为路径\(DEF\)),偏心距为 \(8\)。如果指定\(s=0\)(或 \(s=1\)、\(s=2\)),则树网的核为结点 \(F\),偏心距为 \(12\)。

输入格式

共 \(n\) 行。

第 \(1\) 行,两个正整数 \(n\) 和 \(s\),中间用一个空格隔开。其中 \(n\) 为树网结点的个数,\(s\) 为树网的核的长度的上界。设结点编号以此为 \(1,2\dots,n\)。

从第 \(2\) 行到第 \(n\) 行,每行给出 \(3\) 个用空格隔开的正整数 \(u, v, w\),依次表示每一条边的两个端点编号和长度。例如,\(2 4 7\) 表示连接结点 \(2\) 与 \(4\) 的边的长度为 \(7\)。

输出格式

一个非负整数,为指定意义下的最小偏心距。

输入输出样例

输入 #1

  1. 5 2
  2. 1 2 5
  3. 2 3 2
  4. 2 4 4
  5. 2 5 3

输出 #1

  1. 5

输入 #2

  1. 8 6
  2. 1 3 2
  3. 2 3 2
  4. 3 4 6
  5. 4 5 3
  6. 4 6 4
  7. 4 7 2
  8. 7 8 3

输出 #2

  1. 5

说明/提示

  • 对于 \(40\%\) 的数据,保证 \(n \le 15\)。
  • 对于 \(70\%\) 的数据,保证 \(n \le 80\)。
  • 对于 \(100\%\) 的数据,保证 \(n \le 300\),\(0\le s\le10^3\),\(1 \leq u, v \leq n\),\(1 \leq w \leq 10^3\)。

C ++ AC代码

总结回顾

参考文献

NOIP2007 树网的核 [提高组]的更多相关文章

  1. [SDOI2011]消防/[NOIP2007] 树网的核

    消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个国家最兴旺的 ...

  2. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  3. NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防

    NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...

  4. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

  5. 洛谷1099 [NOIP2007] 树网的核

    链接https://www.luogu.org/problemnew/show/P1099 题目描述 设T=(V,E,W)是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称TTT为 ...

  6. noip2007树网的核

    想一下可以发现随便枚举一条直径做就可以了. 核越长越好.于是枚举核的过程可以做到O(n) 然后就是统计答案. 对于每个核最大偏心距肯定是核上面每个点不走核内的点所能走到的最远点的最值. 而且对于核的两 ...

  7. BZOJ2282 SDOI2011消防/NOIP2007树网的核(二分答案+树形dp)

    要求最大值最小容易想到二分答案.首先对每个点求出子树中与其最远的距离是多少,二分答案后就可以标记上一些必须在所选择路径中的点,并且这些点是不应存在祖先关系的.那么如果剩下的点数量>=3,显然该答 ...

  8. [NOIP2007] 提高组 洛谷P1099 树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  9. 树网的核 2007年NOIP全国联赛提高组(floyed)

    树网的核 2007年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond     题目描述 Description [问题描述]设 T= ...

随机推荐

  1. HBase面试考点

    HBase 架构图 组成部分及作用 Zookeeper在HBase中作用 Master的高可用 RegionServer的监控 元数据的入口 HMaster 不仅有维护集群元数据信息的功能,还能 通过 ...

  2. Django---博客项目实战

    1.urls from django.conf.urls import url from django.contrib import admin from blog import views urlp ...

  3. 监督学习-KNN最邻近分类算法

    分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术建立分类模型,从而对没有分类的数据进行分类的分析方法. 分类问题的应用场景:用于将事物打上一 ...

  4. 浅谈NTLM Hash

    认识Windows Hash 早期SMB协议在网络上传输明文口令.后来出现LAN Manager 挑战/响应验证机制(LM),其很容易破解,因此微软提出了WindowsNT挑战/响应验证机制(NTLM ...

  5. 【工具】 - BeanUtils增强篇

    public class BeanPlusUtils extends BeanUtils { public static <S, T> List<T> copyListProp ...

  6. zookeeper代替eureka与springcloud整合

    注册中心 zookeeper: zookeeper是一个分布式协调工具,可以实现注册中心功能 关闭Linux服务器防火墙后启动zookeeper服务器 zookeeper服务器取代Eureka服务器, ...

  7. 第十二章 类加载器&反射

    12.1.类加载器 12.1.1.类加载 当程序要使用某个类时,如果该类还未被加载到内存中,则系统会通过类的加载.类的连接.类的初始化这三个步骤来对类进行初始化.如果不出现意外情况,JVM将会连续完成 ...

  8. PHP pi() 函数

    实例 返回圆周率 PI 的值: <?phpecho(pi());?>高佣联盟 www.cgewang.com 定义和用法 pi() 函数返回圆周率 PI 的值. 提示:命名常量 M_PI ...

  9. SpringBoot注解综合

    SpringBoot注解综合 @Bean 注解通常会应用在一些配置类(由@Configuration注解描述)中,用于描述具备返回值的方法,然后系统底层会通过反射调用其方法,获取对象基于作用域将对象进 ...

  10. centos7与centos6命令差异

    技术群: 816227112 查看ip centos6 : ifconfigcentos7 : ip addr 修改hostname centos6 : 修改/etc/sysconfig/networ ...