sklearn: CountVectorize处理及一些使用参数
sklearn: CountVectorize处理及一些使用参数
CountVectorizer是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。
CountVectorizer会将文本中的词语转换为词频矩阵,它通过fit_transform函数计算各个词语出现的次数。
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
lowercase=True, max_df=1.0, max_features=None, min_df=1,
ngram_range=(1, 1), preprocessor=None, stop_words=None,
strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
tokenizer=None, vocabulary=None)
CountVectorizer类的参数很多,分为三个处理步骤:preprocessing、tokenizing、n-grams generation.
一般要设置的参数是:ngram_range,max_df,min_df,max_features,analyzer,stop_words,token_pattern等,具体情况具体分析 。
- ngram_range : 例如ngram_range(min,max),是指将text分成min,min+1,min+2,.........max 个不同的词组。比如 '我 爱 中国' 中ngram_range(1,3)之后可得到'我' '爱' '中国' '我 爱' '爱 中国' 和'我 爱 中国',如果是ngram_range (1,1) 则只能得到单个单词'我' '爱'和'中国'。
- max_df:可以设置为范围在[0.0 1.0]的float,也可以设置为没有范围限制的int,默认为1.0。 这个参数的作用是作为一个阈值,当构造语料库的关键词集的时候,如果某个词的document frequence大于max_df,这个词不会被当作关键词。如果这个参数是float,则表示词出现的次数与语料库文档数的百分比,如果是int,则表示词出现的次数。如果参数中已经给定了vocabulary,则这个参数无效。
- min_df: 类似于max_df,不同之处在于如果某个词的document frequence小于min_df,则这个词不会被当作关键词。
- max_features:默认为None,可设为int,对所有关键词的term frequency进行降序排序,只取前max_features个作为关键词集。
- analyzer:一般使用默认,可设置为string类型,如’word’, ‘char’, ‘char_wb’,还可设置为callable类型,比如函数是一个callable类型。
- stop_words:设置停用词,设为english将使用内置的英语停用词,设为一个list可自定义停用词,设为None不使用停用词,设为None且max_df∈[0.7, 1.0)将自动根据当前的语料库建立停用词表。
- token_pattern:过滤规则,表示token的正则表达式,需要设置analyzer == ‘word’,默认的正则表达式选择2个及以上的字母或数字作为token,标点符号默认当作token分隔符,而不会被当作token。
- decode_error:默认为strict,遇到不能解码的字符将报UnicodeDecodeError错误,设为ignore将会忽略解码错误,还可以设为replace,作用尚不明确。
- binary:默认为False,一个关键词在一篇文档中可能出现n次,如果binary=True,非零的n将全部置为1,这对需要布尔值输入的离散概率模型的有用的。
实例:
from sklearn.feature_extraction.text import CountVectorizer
corpus = ['我 爱 中国 中国','爸爸 妈妈 爱 我','爸爸 妈妈 爱 中国']
# corpus = ['我爱中国','爸爸妈妈爱我','爸爸妈妈爱中国']
vectorizer = CountVectorizer(min_df=1, ngram_range=(1, 1)) ##创建词袋数据结构,里面相应参数设置
features = vectorizer.fit_transform(corpus) #拟合模型,并返回文本矩阵
print("CountVectorizer:")
print(vectorizer.get_feature_names()) #显示所有文本的词汇,列表类型
#词表
#['中国', '妈妈', '爸爸']
print(vectorizer.vocabulary_) #词汇表,字典类型
#key:词,value:对应编号
#{'中国': 0, '爸爸': 2, '妈妈': 1}
print(features) #文本矩阵
#第一行 (0, 0) 2 表示为:第0个列表元素,**词典中索引为0的元素**, 词频为2
# (0, 0) 2
# (1, 1) 1
# (1, 2) 1
# (2, 1) 1
# (2, 2) 1
# (2, 0) 1
print(features.toarray()) #.toarray() 是将结果转化为稀疏矩阵
#将结果转化为稀疏矩阵
#[[2 0 0]
# [0 1 1]
# [1 1 1]]
print(features.toarray().sum(axis=0)) #统计每个词在所有文档中的词频
#文本中的词频
#[3 2 2]
sklearn: CountVectorize处理及一些使用参数的更多相关文章
- SVM的sklearn.svm.SVC实现与类参数
SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...
- SKlearn中分类决策树的重要参数详解
学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学 ...
- sklearn.model_selection 的train_test_split方法和参数
train_test_split是sklearn中用于划分数据集,即将原始数据集划分成测试集和训练集两部分的函数. from sklearn.model_selection import train_ ...
- python sklearn PCA源码阅读:参数n_components的设置(设为‘mle’出错的原因)
在介绍n_components参数之前,首先贴一篇PCA参数详解的文章:http://www.cnblogs.com/akrusher/articles/6442549.html. 按照文章中对于n_ ...
- sklearn.svc 参数
sklearn.svc 参数 sklearn中的SVC函数是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: libsvm中的二次规划问题的解决算法是SMO). 对于SVC函数的参数 ...
- 使用sklearn做单机特征工程
目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...
- 【转】使用sklearn做单机特征工程
这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 ...
- Python机器学习笔记 使用sklearn做特征工程和数据挖掘
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处 ...
- 基于sklearn和keras的数据切分与交叉验证
在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法: 使用自动切分的验证集 使用手动切分的验证集 一.自动切分 在Keras中,可以从数据集中切分出一部 ...
随机推荐
- go特性-数组与切片
数组: 复制传递(不要按照c/c++的方式去理解,c/c++中数组是引用传递),定长 切片: 引用传递,底层实现是3个字段 array(数组) + len(长度) +cap(容量) type slic ...
- Arduion学习(三)驱动温度传感器
一.实验目的: 1.将温度值打印显示在串口监视器 1.将温度值打印显示在串口,不同温度段显示不同的灯光,并在温度过高或过低时利用蜂鸣器报警. 二.实验准备: 1.查阅相关资料,了解本次实验所用到的引脚 ...
- jvm参数与生产配置
堆内存分配:JVM初始分配的内存由-Xms指定,默认是物理内存的1/64JVM最大分配的内存由-Xmx指定,默认是物理内存的1/4默认空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制:空 ...
- Linux Tomcat安装篇(daemon运行,开机自启动)
目录 前言 作为一个Java后端开发者,tomcat想必是最最最熟悉的一个开发组件了,tomcat环境的搭建部署都十分简单.安装部署只需要两步,第一步下载,第二步解压,这样一个基础的tomcat环境就 ...
- 帆软用工具测试超链接打开弹窗(iframe嵌套),解决js传参带中文传递有乱码问题
1.新建超链接 随意点击一个单元格右击,选择 超级链接 2.在弹出的窗口中选择JavaScript脚本 如图: 其中红框框出的是几个要点 ,左边的就不讲了,右上角的参数cc是设置了公式remote ...
- 如何将图片、html等格式转成pdf
const int WWidth = 600; const int HHeight = 800; List<System.Drawing.Image> AllName = new List ...
- Kafak探究之路- 内部结构小结
1.框架与工作流 2 内部结构 kafka的每个主题分区的数据在 first-0(主题名-分区号)文件夹下,保存 n组xxx.log文件与xxx.index文件.log文件存发送消息的元数据,每个大小 ...
- 老猿学5G扫盲贴:中国移动网络侧CHF的功能分解说明
☞ ░ 老猿Python博文目录░ 一.引言 在<老猿学5G扫盲贴:中国移动网络侧CHF主要功能及计费处理的主要过程>介绍了中国移动CHF的总体功能,同时说明了CHF网元主要由AGF.CD ...
- 第8.22节 Python案例详解:重写 “富比较”方法控制比较逻辑
一. 案例说明 本节定义一个小汽车的类Car,类中包括车名carname.百公里油耗oilcostper100km.价格price三个属性.然后实现__lt__.__gt__.__le__.__ge_ ...
- 搭建xss-platform平台
一直想搭在公网搭建自己的XSS平台用来验证XSS漏洞,使用别人的平台自己心里总会有担心被摘果子的顾虑,前几天参考了不少前人的博客,终于搭建好了,搭建的途中也遇到了不少坑,故把搭建的经验分享出来,大佬轻 ...