本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理

在 Python 开发中,你可能听说过「描述符」这个概念,由于我们很少直接使用它,所以大部分开发人员并不了解它的原理。

但作为熟练使用 Python,想要进阶的你,建议还是了解一下描述符的原理,这也便于你更深层次地理解 Python 的设计思想。

其实,在开发过程中,虽然我们没有直接使用到描述符,但是它在底层却无时不刻地被使用到,例如以下这些:

  • functionbound methodunbound method
  • 装饰器propertystaticmethodclassmethod

是不是都很熟悉?

这些都与描述符有着千丝万缕的关系,这篇文章我们就来看一下描述符背后的工作原理。

什么是描述符?

在解释什么是「描述符」之前,我们先来看一个简单的例子。

class A:
x = 10 print(A.x) # 10
复制代码

这个例子非常简单,我们在类 A 中定义了一个类属性 x,然后打印它的值。

其实,除了直接定类属性之外,我们还可以这样定义一个类属性:

class Ten:
def __get__(self, obj, objtype=None):
return 10 class A:
x = Ten() # 属性换成了一个类 print(A.x) # 10
复制代码

仔细看,这次类属性 x 不再是一个具体的值,而是一个类 TenTen 中定义了一个 __get__ 方法,返回具体的值。

在 Python 中,允许把一个类属性,托管给一个类,这个属性就是一个「描述符」。

换句话说,「描述符」是一个「绑定行为」的属性。

怎么理解这句话?

回忆一下,我们开发时,一般把「行为」叫做什么?是的,「行为」一般指的是一个方法。

所以我们也可以把「描述符」理解为:对象的属性不再是一个具体的值,而是交给了一个方法去定义。

可以想一下,如果我们用一个方法去定义一个属性,这么做的好处是什么?

有了方法,我们就可以在方法内实现自己的逻辑,最简单的,我们可以根据不同的条件,在方法内给属性赋予不同的值,就像下面这样:

class Age:
def __get__(self, obj, objtype=None):
if obj.name == 'zhangsan':
return 20
elif obj.name == 'lisi':
return 25
else:
return ValueError("unknow") class Person: age = Age() def __init__(self, name):
self.name = name p1 = Person('zhangsan')
print(p1.age) # 20 p2 = Person('lisi')
print(p2.age) # 25 p3 = Person('wangwu')
print(p3.age) # unknow
复制代码

这个例子中,age 类属性被另一个类托管了,在这个类的 __get__ 中,它会根据 Person 类的属性 name,决定 age 是什么值。

这只是一个非常简单的例子,我们可以看到,通过描述符的使用,我们可以轻易地改变一个类属性的定义方式。

描述符协议

了解了描述符的定义,现在我们把重点放到托管属性的类上。

其实,一个类属性想要托管给一个类,这个类内部实现的方法不能是随便定义的,它必须遵守「描述符协议」,也就是要实现以下几个方法:

  • __get__(self, obj, type=None) -> value
  • __set__(self, obj, value) -> None
  • __delete__(self, obj) -> None

只要是实现了以上几个方法的其中一个,那么这个类属性就可以称作描述符。

另外,描述符又可以分为「数据描述符」和「非数据描述符」:

  • 只定义了 __get___,叫做非数据描述符
  • 除了定义 __get__ 之外,还定义了 __set____delete__,叫做数据描述符

它们两者有什么区别,我会在下面详述。

现在我们来看一个包含 __get____set__ 方法的描述符例子:

# coding: utf8

class Age:

    def __init__(self, value=20):
self.value = value def __get__(self, obj, type=None):
print('call __get__: obj: %s type: %s' % (obj, type))
return self.value def __set__(self, obj, value):
if value <= 0:
raise ValueError("age must be greater than 0")
print('call __set__: obj: %s value: %s' % (obj, value))
self.value = value class Person: age = Age() def __init__(self, name):
self.name = name p1 = Person('zhangsan')
print(p1.age)
# call __get__: obj: <__main__.Person object at 0x1055509e8> type: <class '__main__.Person'>
# 20 print(Person.age)
# call __get__: obj: None type: <class '__main__.Person'>
# 20 p1.age = 25
# call __set__: obj: <__main__.Person object at 0x1055509e8> value: 25 print(p1.age)
# call __get__: obj: <__main__.Person object at 0x1055509e8> type: <class '__main__.Person'>
# 25 p1.age = -1
# ValueError: age must be greater than 0
复制代码

在这例子中,类属性 age 是一个描述符,它的值取决于 Age 类。

从输出结果来看,当我们获取或修改 age 属性时,调用了 Age__get____set__ 方法:

  • 当调用 p1.age 时,__get__ 被调用,参数 objPerson 实例,typetype(Person)
  • 当调用 Person.age 时,__get__ 被调用,参数 objNonetypetype(Person)
  • 当调用 p1.age = 25时,__set__ 被调用,参数 objPerson 实例,value 是25
  • 当调用 p1.age = -1时,__set__ 没有通过校验,抛出 ValueError

其中,调用 __set__ 传入的参数,我们比较容易理解,但是对于 __get__ 方法,通过类或实例调用,传入的参数是不同的,这是为什么?

这就需要我们了解一下描述符的工作原理。

描述符的工作原理

要解释描述符的工作原理,首先我们需要先从属性的访问说起。

在开发时,不知道你有没有想过这样一个问题:通常我们写这样的代码 a.b,其背后到底发生了什么?

这里的 ab 可能存在以下情况:

  1. a 可能是一个类,也可能是一个实例,我们这里统称为对象
  2. b 可能是一个属性,也可能是一个方法,方法其实也可以看做是类的属性

其实,无论是以上哪种情况,在 Python 中,都有一个统一的调用逻辑:

  1. 先调用 __getattribute__ 尝试获得结果
  2. 如果没有结果,调用 __getattr__

用代码表示就是下面这样:

def getattr_hook(obj, name):
try:
return obj.__getattribute__(name)
except AttributeError:
if not hasattr(type(obj), '__getattr__'):
raise
return type(obj).__getattr__(obj, name)
复制代码

我们这里需要重点关注一下 __getattribute__,因为它是所有属性查找的入口,它内部实现的属性查找顺序是这样的:

  1. 要查找的属性,在类中是否是一个描述符
  2. 如果是描述符,再检查它是否是一个数据描述符
  3. 如果是数据描述符,则调用数据描述符的 __get__
  4. 如果不是数据描述符,则从 __dict__ 中查找
  5. 如果 __dict__ 中查找不到,再看它是否是一个非数据描述符
  6. 如果是非数据描述符,则调用非数据描述符的 __get__
  7. 如果也不是一个非数据描述符,则从类属性中查找
  8. 如果类中也没有这个属性,抛出 AttributeError 异常

写成代码就是下面这样:

# 获取一个对象的属性
def __getattribute__(obj, name):
null = object()
# 对象的类型 也就是实例的类
objtype = type(obj)
# 从这个类中获取指定属性
cls_var = getattr(objtype, name, null)
# 如果这个类实现了描述符协议
descr_get = getattr(type(cls_var), '__get__', null)
if descr_get is not null:
if (hasattr(type(cls_var), '__set__')
or hasattr(type(cls_var), '__delete__')):
# 优先从数据描述符中获取属性
return descr_get(cls_var, obj, objtype)
# 从实例中获取属性
if hasattr(obj, '__dict__') and name in vars(obj):
return vars(obj)[name]
# 从非数据描述符获取属性
if descr_get is not null:
return descr_get(cls_var, obj, objtype)
# 从类中获取属性
if cls_var is not null:
return cls_var
# 抛出 AttributeError 会触发调用 __getattr__
raise AttributeError(name)
复制代码

如果不好理解,你最好写一个程序测试一下,观察各种情况下的属性的查找顺序。

到这里我们可以看到,在一个对象中查找一个属性,都是先从 __getattribute__ 开始的。

__getattribute__ 中,它会检查这个类属性是否是一个描述符,如果是一个描述符,那么就会调用它的 __get__ 方法。但具体的调用细节和传入的参数是下面这样的:

  • 如果 a 是一个实例,调用细节为:
type(a).__dict__['b'].__get__(a, type(a))
复制代码

  • 如果 a 是一个,调用细节为:
a.__dict__['b'].__get__(None, a)
复制代码

所以我们就能看到上面例子输出的结果。

数据描述符和非数据描述符

了解了描述符的工作原理,我们继续来看数据描述符和非数据描述符的区别。

从定义上来看,它们的区别是:

  • 只定义了 __get___,叫做非数据描述符
  • 除了定义 __get__ 之外,还定义了 __set____delete__,叫做数据描述符

此外,我们从上面描述符调用的顺序可以看到,在对象中查找属性时,数据描述符要优先于非数据描述符调用。

在之前的例子中,我们定义了 __get____set__,所以那些类属性都是数据描述符

我们再来看一个非数据描述符的例子:

class A:

    def __init__(self):
self.foo = 'abc' def foo(self):
return 'xyz' print(A().foo) # 输出什么?
复制代码

这段代码,我们定义了一个相同名字的属性和方法 foo,如果现在执行 A().foo,你觉得会输出什么结果?

答案是 abc

为什么打印的是实例属性 foo 的值,而不是方法 foo 呢?

这就和非数据描述符有关系了。

我们执行 dir(A.foo),观察结果:

print(dir(A.foo))
# [... '__get__', '__getattribute__', ...]
复制代码

看到了吗?Afoo 方法其实实现了 __get__,我们在上面的分析已经得知:只定义 __get__ 方法的对象,它其实是一个非数据描述符,也就是说,我们在类中定义的方法,其实本身就是一个非数据描述符。

所以,在一个类中,如果存在相同名字的属性和方法,按照上面所讲的 __getattribute__ 中查找属性的顺序,这个属性就会优先从实例中获取,如果实例中不存在,才会从非数据描述符中获取,所以在这里优先查找的是实例属性 foo 的值。

到这里我们可以总结一下关于描述符的相关知识点:

  • 描述符必须是一个类属性
  • __getattribute__ 是查找一个属性(方法)的入口
  • __getattribute__ 定义了一个属性(方法)的查找顺序:数据描述符、实例属性、非数据描述符、类属性
  • 如果我们重写了 __getattribute__ 方法,会阻止描述符的调用
  • 所有方法其实都是一个非数据描述符,因为它定义了 __get__

描述符的使用场景

了解了描述符的工作原理,那描述符一般用在哪些业务场景中呢?

在这里我用描述符实现了一个属性校验器,你可以参考这个例子,在类似的场景中去使用它。

首先我们定义一个校验基类 Validator,在 __set__ 方法中先调用 validate 方法校验属性是否符合要求,然后再对属性进行赋值。

class Validator:

    def __init__(self):
self.data = {} def __get__(self, obj, objtype=None):
return self.data[obj] def __set__(self, obj, value):
# 校验通过后再赋值
self.validate(value)
self.data[obj] = value def validate(self, value):
pass
复制代码

接下来,我们定义两个校验类,继承 Validator,然后实现自己的校验逻辑。


class Number(Validator): def __init__(self, minvalue=None, maxvalue=None):
super(Number, self).__init__()
self.minvalue = minvalue
self.maxvalue = maxvalue def validate(self, value):
if not isinstance(value, (int, float)):
raise TypeError(f'Expected {value!r} to be an int or float')
if self.minvalue is not None and value < self.minvalue:
raise ValueError(
f'Expected {value!r} to be at least {self.minvalue!r}'
)
if self.maxvalue is not None and value > self.maxvalue:
raise ValueError(
f'Expected {value!r} to be no more than {self.maxvalue!r}'
) class String(Validator): def __init__(self, minsize=None, maxsize=None):
super(String, self).__init__()
self.minsize = minsize
self.maxsize = maxsize def validate(self, value):
if not isinstance(value, str):
raise TypeError(f'Expected {value!r} to be an str')
if self.minsize is not None and len(value) < self.minsize:
raise ValueError(
f'Expected {value!r} to be no smaller than {self.minsize!r}'
)
if self.maxsize is not None and len(value) > self.maxsize:
raise ValueError(
f'Expected {value!r} to be no bigger than {self.maxsize!r}'
)
复制代码

最后,我们使用这个校验类:

class Person:

    # 定义属性的校验规则 内部用描述符实现
name = String(minsize=3, maxsize=10)
age = Number(minvalue=1, maxvalue=120) def __init__(self, name, age):
self.name = name
self.age = age # 属性符合规则
p1 = Person('zhangsan', 20)
print(p1.name, p1.age) # 属性不符合规则
p2 = person('a', 20)
# ValueError: Expected 'a' to be no smaller than 3
p3 = Person('zhangsan', -1)
# ValueError: Expected -1 to be at least 1
复制代码

现在,当我们对 Person 实例进行初始化时,就可以校验这些属性是否符合预定义的规则了。

function与method

我们再来看一下,在开发时经常看到的 functionunbound methodbound method 它们之间到底有什么区别?

来看下面这段代码:

class A:

    def foo(self):
return 'xyz' print(A.__dict__['foo']) # <function foo at 0x10a790d70>
print(A.foo) # <unbound method A.foo>
print(A().foo) # <bound method A.foo of <__main__.A object at 0x10a793050>>
复制代码

从结果我们可以看出它们的区别:

  • function 准确来说就是一个函数,并且它实现了 __get__ 方法,因此每一个 function 都是一个非数据描述符,而在类中会把 function 放到 __dict__ 中存储
  • function 被实例调用时,它是一个 bound method
  • function 被类调用时, 它是一个 unbound method

function 是一个非数据描述符,我们之前已经讲到了。

bound methodunbound method 的区别就在于调用方的类型是什么,如果是一个实例,那么这个 function 就是一个 bound method,否则它是一个 unbound method

property/staticmethod/classmethod

我们再来看 propertystaticmethodclassmethod

这些装饰器的实现,默认是 C 来实现的。

其实,我们也可以直接利用 Python 描述符的特性来实现这些装饰器,

property 的 Python 版实现:

class property:

    def __init__(self, fget=None, fset=None, fdel=None, doc=None):
self.fget = fget
self.fset = fset
self.fdel = fdel
self.__doc__ = doc def __get__(self, obj, objtype=None):
if obj is None:
return self.fget
if self.fget is None:
raise AttributeError(), "unreadable attribute"
return self.fget(obj) def __set__(self, obj, value):
if self.fset is None:
raise AttributeError, "can't set attribute"
return self.fset(obj, value) def __delete__(self, obj):
if self.fdel is None:
raise AttributeError, "can't delete attribute"
return self.fdel(obj) def getter(self, fget):
return type(self)(fget, self.fset, self.fdel, self.__doc__) def setter(self, fset):
return type(self)(self.fget, fset, self.fdel, self.__doc__) def deleter(self, fdel):
return type(self)(self.fget, self.fset, fdel, self.__doc__)
复制代码

staticmethod 的 Python 版实现:

class staticmethod:

    def __init__(self, func):
self.func = func def __get__(self, obj, objtype=None):
return self.func
复制代码

classmethod 的 Python 版实现:

class classmethod:

    def __init__(self, func):
self.func = func def __get__(self, obj, klass=None):
if klass is None:
klass = type(obj)
def newfunc(*args):
return self.func(klass, *args)
return newfunc
复制代码

除此之外,你还可以实现其他功能强大的装饰器。

由此可见,通过描述符我们可以实现强大而灵活的属性管理功能,对于一些要求属性控制比较复杂的场景,我们可以选择用描述符来实现。

总结

这篇文章我们主要讲了 Python 描述符的工作原理。

首先,我们从一个简单的例子了解到,一个类属性是可以托管给另外一个类的,这个类如果实现了描述符协议方法,那么这个类属性就是一个描述符。此外,描述符又可以分为数据描述符和非数据描述符。

之后我们又分析了获取一个属性的过程,一切的入口都在 __getattribute__ 中,这个方法定义了寻找属性的顺序,其中实例属性优先于数据描述符调用,数据描述符要优先于非数据描述符调用。

另外我们又了解到,方法其实就是一个非数据描述符,如果我们在类中定义了相同名字的实例属性和方法,按照 __getattribute__ 中的属性查找顺序,实例属性优先访问。

最后我们分析了 functionmethod 的区别,以及使用 Python 描述符也可以实现 propertystaticmethodclassmethod 装饰器。

Python 描述符提供了强大的属性访问控制功能,我们可以在需要对属性进行复杂控制的场景中去使用它。

想要获取更多Python学习资料可以加
QQ:2955637827私聊
或加Q群630390733
大家一起来学习讨论吧!

Python进阶——什么是描述符?的更多相关文章

  1. 如何正确地使用Python的属性和描述符

    关于@property装饰器 在Python中我们使用@property装饰器来把对函数的调用伪装成对属性的访问. 那么为什么要这样做呢?因为@property让我们将自定义的代码同变量的访问/设定联 ...

  2. python高级编程之描述符与属性03

    # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' #属性Property #提供了一个内建描述符类型,它知道如何将一个 ...

  3. python高级编程之描述符与属性02

    # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrator' #元描述符 #特点是:使用宿主类的一个或者多个方法来执行一个任务,可 ...

  4. Python 为什么要使用描述符?

    学习 Python 这么久了,说起 Python 的优雅之处,能让我脱口而出的, Descriptor(描述符)特性可以排得上号. 描述符 是Python 语言独有的特性,它不仅在应用层使用,在语言的 ...

  5. Python中属性和描述符的简单使用

    Python的描述符和属性是接触到Python核心编程中一个比较难以理解的内容,自己在学习的过程中也遇到过很多的疑惑,通过google和阅读源码,现将自己的理解和心得记录下来,也为正在为了该问题苦恼的 ...

  6. 流畅的python第二十章属性描述符学习记录

    描述符是对多个属性运用相同存取逻辑的一种方式.例如,Django ORM 和 SQL Alchemy等 ORM 中的字段类型是描述符,把数据库记录中字段里的数据与 Python 对象的属性对应起来.描 ...

  7. 90% 的 Python 开发者不知道的描述符应用

    经过上面的讲解,我们已经知道如何定义描述符,且明白了描述符是如何工作的. 正常人所见过的描述符的用法就是上篇文章提到的那些,我想说的是那只是描述符协议最常见的应用之一,或许你还不知道,其实有很多 Py ...

  8. python基础学习之描述符和装饰器

    描述符的了解: 描述符协议: python描述符是一个"绑定行为"的对象属性,在描述符协议中,它可以通过方法重写属性的访问.这些方法有: __get__, __set__, 和__ ...

  9. python小知识-__call__和类装饰器的结合使用,数据描述符__get__\__set__\__delete__(描述符类是Python中一种用于储存类属性值的对象)

    class Decorator(): def __init__(self, f): print('run in init......') self.f = f def __call__(self, a ...

随机推荐

  1. 自定义JSTL Tag

    <?xml version="1.0" encoding="UTF-8" ?> <taglib xmlns="http://java ...

  2. PHP 统计文件数和文件大小

    /** * 统计文件数和文件大小 */private function getFileCacheCount($pathName){ $data = [ 'num' => 0, 'size' =& ...

  3. H5,Css小姐又作画了

    用H5和CSS3做出自己名字缩写. <html> <head> <meta charset="utf-8"> <title>name ...

  4. 「考试」CSP-S 2020

    乱扯 爆炸的过程是这样的 写了\(2.5h\)的\(T1\)过不去大样例,自闭了 决定调\(T2\)然后过了样例但事实上写的完全是假的 这个时候突然\(T1\)灵光一闪就没再看\(T2\)了 然后就一 ...

  5. mininet + opendaylight环境配置

    环境配置 ubuntu18.04 镜像 mininet2.2.2 apt-get install mininet 但这种安装只是TLS版本的mininet,与最新版本在功能上有所差距. 控制器(ope ...

  6. JavaScript原型链及其污染

    JavaScript原型链及其污染 一.什么是原型链? 1.JavaScript中,我们如果要define一个类,需要以define"构造函数"的方式来define: functi ...

  7. python模块wifi使用小记

    安装命令 pip install wifi 连接命令 sudo wifi connect --add-hoc ssid,使用该命令会修改/etc/network/interfaces配置文件,导致启动 ...

  8. PyQt(Python+Qt)学习随笔:字体writingSystem、ProportionalFonts、MonospacedFonts的含义以及QFontComboBox字体组合框详解

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 一.引言 在介绍QFontComboBox之前,我们先简单介绍一下字体 ...

  9. 转:关于Python中的lambda,这篇阅读量10万+的文章可能是你见过的最完整的讲解

    lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...

  10. PyQt学习随笔:ListView控件删除一项列表项的方法

    ListView控件可以通过控件对应数据存储删除列表项,具体使用: 数据存储.removeRow(元素索引位置) 删除指定位置的一个列表项. 数据存储如果不知道程序定义的数据存储名,可以通过model ...