A. Regular Bracket Sequence

显然,"\(()\)"不影响结果它是自我匹配的,可以把所有的\(((\)和\())\)都放在左边/右边,这样只要检查它们的数目就行,还有个坑点,就是如果\()(\)多于一,需要给左右两边一个负担,必须小于它们的数量才行。

#include <cstdio>
#include <iostream>
using namespace std;
int c1, c2, c3, c4;
int main(){
scanf("%d%d%d%d", &c1, &c2, &c3, &c4);
if(c1 == c4 && c4 >= min(c3, 1)) puts("1");
else puts("0");
return 0;
}

B. Discounts

模拟,从小到大排好序后,答案 \(=\) 总数 - \(a[n - q_i + 1]\)。

#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 300010;
typedef long long LL;
int n, m, a[N], q;
LL sum = 0;
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", a + i), sum += a[i];
}
sort(a + 1, a + 1 + n);
scanf("%d", &m);
for(int i = 1; i <= m; i++){
scanf("%d", &q);
printf("%lld\n", sum - a[n - q + 1]);
}
return 0;
}

C. Painting the Fence

考虑到\(q <= 5000\),用前缀和维护每个位置都有几个人刷,然后预处理\([l, r]\)这段有多少\(1\)(他不刷就没人刷)和\(2\)(安排掉他俩就没人刷),用\(O(q ^ 2)\)的复杂度暴力枚举两个人分别是谁,然后\(O(1)\)找即可。

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
typedef pair<int, int> PII;
const int N = 5010;
int n, m, sum[N], c[N], c2[N], tot = 0, ans = -1;
PII a[N];
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= m; i++){
scanf("%d%d", &a[i].first, &a[i].second); }
sort(a + 1, a + 1 + m);
for(int i = 1; i <= m; i++){
sum[a[i].first]++, sum[a[i].second + 1]--;
}
for(int i = 1; i <= n; i++) {
sum[i] += sum[i - 1];
c[i] = c[i - 1] + (sum[i] == 1);
c2[i] = c2[i - 1] + (sum[i] == 2);
tot += (sum[i] > 0);
}
for(int i = 1; i < m; i++){
for(int j = i + 1; j <= m; j++){
int cnt = tot;
int L = a[i].first, R = a[i].second;
int L1 = a[j].first, R1 = a[j].second;
if(L1 <= R) {
cnt -= c[L1 - 1] - c[L - 1];
cnt -= c[max(R, R1)] - c[min(R, R1)];
cnt -= c2[min(R, R1)] - c2[L1 - 1];
}else{
cnt -= c[R] - c[L - 1];
cnt -= c[R1] - c[L1 - 1];
}
ans = max(ans, cnt);
}
}
printf("%d\n", ans);
return 0;
}

F. Clear the String

区间\(dp\)。

设\(f[i][j]\) 为合并\([i, j]\)区间的最小花费,对于任何一个\(f[i][j]\),有三种决策:

  1. 直接多加一位\(min(f[i + 1][j], f[i][j - 1]) + 1\)

  2. 找一个位置\(k(i + 1 <= k <= j )\),使\(str[i] = str[k]\),更新答案为:

\(f[i + 1][k - 1] + f[k][j] + (s[k] != s[i])\)

等于是把\([i + 1, k - 1]\)先合并起来,然后\(i\)字符就会贴到\(k\)一起,然后这两个字符一样,可以视作一个字符,每次修改最坏是用\(k\)为左边界,\(i\)字符作为附庸不用计算花费

  1. 同样的还有用右端点合并...

想状态的时候我也会有疑惑,为什么只用找开头和结尾跟中间匹配呢?重复,每次处理区间时,\(l + 1、l + 2...\)已经找过匹配点了...

后来发现只需要处理用开头字符一种情况,因为两种状态转移上重复了,每次找\(k\)的过程中也相当于\(k\)去找\(i\),在这之前想到于已经匹配过\([l + 1, r], [l + 2, r]...[l + n, r]\),这样的匹配方式是可逆的,先后反复是相同的,即使此时的\(l + n\)左边还没处理,但是每次处理相当于一个包围的形式,可以不重不漏地继承。所以可以不需用步骤\(3\),但是蒟蒻的我肯定想不到啦...

顺便,注意初始化问题,对于\(f[i][j] (i > j)\) 花费是\(0\),当然如果边界写的精准了这种状态不会用到。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 510;
int n, f[N][N];
char s[N];
int main(){
scanf("%d%s", &n, s + 1);
for(int i = 1; i <= n; i++) f[i][i] = 1;
for(int l = 2; l <= n; l++){
for(int i = 1, j; (j = i + l - 1) <= n; i++){
f[i][j] = min(f[i + 1][j], f[i][j - 1]) + 1;
for(int k = i; k <= j - 2; k++){
f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j - 1] + (s[k] != s[j]));
}
for(int k = i + 2; k <= j; k++){
f[i][j] = min(f[i][j], f[i + 1][k - 1] + f[k][j] + (s[k] != s[i]));
}
}
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++) printf("%d ", f[i][j]);
puts("");
}
printf("%d\n", f[1][n]);
return 0;
}

Codeforces Edu Round 61 A-C + F的更多相关文章

  1. Codeforces Beta Round #61 (Div. 2)

    Codeforces Beta Round #61 (Div. 2) http://codeforces.com/contest/66 A 输入用long double #include<bit ...

  2. Codeforces Beta Round #61 (Div. 2) D. Petya and His Friends 想法

    D. Petya and His Friends time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  3. Educational Codeforces Round 61

    Educational Codeforces Round 61 今早刚刚说我适合打pikmike出的EDU 然后我就挂了 A 不管 B 不管 C 这道题到快结束了才调出来 大概就是\(n^2\)枚举不 ...

  4. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  5. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  6. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

  7. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  8. Codeforces Beta Round #62 题解【ABCD】

    Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...

  9. Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】

    Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...

随机推荐

  1. 机器学习——dbscan密度聚类

    完整版可关注公众号:大数据技术宅获取 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基于密度的有噪应用中的空间聚 ...

  2. 结合实战和源码来聊聊Java中的SPI机制?

    写在前面 SPI机制能够非常方便的为某个接口动态指定其实现类,在某种程度上,这也是某些框架具有高度可扩展性的基础.今天,我们就从源码级别深入探讨下Java中的SPI机制. 注:文章已收录到:https ...

  3. SQL Server将查询出数据进行列转行操作

    在日常的SQL Server数据查询时经常会遇到需要将数据列转换成行的操作,现将自己学习的列转行SQL语句举例如下: --首先查询语句 SELCT * FROM  YXBAK..TBYJKSTEMP ...

  4. CSS属性(字体与文本属性)

    1.字体属性 (1)font-family 把要对这个网站要设置的字体都写上,如果这个浏览器支持第一个字体,则会用,如果不支持则会尝试第二个,如果设置的字体系统都不支持则会使用系统默认的字体作为网站的 ...

  5. mysql之sql语句逻辑执行顺序

    1. (1)from先执行,from执行后就会将所有表(多个表时和单表所有的表)数据加载到内存中了 (2)ON执行,得到连接表用的连接条件. (3)JOIN执行,根据ON的连接条件,将from加载的所 ...

  6. window.frames["id"].location使用

    由于最近需要维护一个老项目不得不去学习一些自己都没接触过的项目,老项目中虽然技术已经被淘汰,但是思想还是值得去学习探究的,无论是jsp,freemarker,freemarker这些模板引擎还是Vue ...

  7. kali 系列学习02 - 被动扫描

    被动扫描是指目标无法察觉的情况下进行信息收集,注意有经验的渗透工程师会在信息收集上花费整个测试过程一半以上的时间,信息量太大,需要自动化的信息收集工具. 一.借鉴<kali linux2 网络渗 ...

  8. 安装mongodb扩展

    curl -O https://pecl.php.net/get/mongodb-1.2.3.tgz tar zxf mongodb-1.2.3.tgzcd mongodb-1.2.3 phpize ...

  9. 重新认识C++的"cin >>"、"cout <<" 简简单单 - 快快乐乐

    重新认识C++的"cin >>"."cout <<" 简简单单 - 快快乐乐 JERRY_Z. ~ 2020 / 11 / 24 转载请 ...

  10. 一口气带你读懂80年IT发展史

    计算机的发展历史有多长?真正意义上的计算机诞生,距今也只有80多年的时间.80年,对于每一个人来说,是很长的时间,但对于整个历史来说,只是短短的一瞬间.这八十多年只是整段历史中的一粒尘埃罢了,但却对这 ...