1 简介

  pandas作为开展数据分析的利器,蕴含了与数据处理相关的丰富多样的API,使得我们可以灵活方便地对数据进行各种加工,但很多pandas中的实用方法其实大部分人都是不知道的,今天就来给大家介绍6个不太为人们所所熟知的实用pandas小技巧。

图1

2 6个实用的pandas小知识

2.1 Series与DataFrame的互转

  很多时候我们计算过程中产生的结果是Series格式的,而接下来的很多操作尤其是使用链式语法时,需要衔接着传入DataFrame格式的变量,这种时候我们就可以使用到pandasSeriesDataFrame转换的方法:

  • 利用to_frame()实现Series转DataFrame
s = pd.Series([0, 1, 2])

# Series转为DataFrame,name参数用于指定转换后的字段名
s = s.to_frame(name='列名')
s

图2

  顺便介绍一下单列数据组成的数据框转为Series的方法:

  • 利用squeeze()实现单列数据DataFrame转Series
# 只有单列数据的DataFrame转为Series
s.squeeze()

图3

2.2 随机打乱DataFrame的记录行顺序

  有时候我们需要对数据框整体的行顺序进行打乱,譬如在训练机器学习模型时,打乱原始数据顺序后取前若干行作为训练集后若干行作为测试集,这在pandas中可以利用sample()方法快捷实现。

  sample()方法的本质功能是从原始数据中抽样行记录,默认为不放回抽样,其参数frac用于控制抽样比例,我们将其设置为1则等价于打乱顺序:

df = pd.DataFrame({
'V1': range(5),
'V2': range(5)
})
df.sample(frac=1)

图4

2.3 利用类别型数据减少内存消耗

  当我们的数据框中某些列是由少数几种值大量重复形成时,会消耗大量的内存,就像下面的例子一样:

import numpy as np

pool = ['A', 'B', 'C', 'D']

# V1列由ABCD大量重复形成
df = pd.DataFrame({
'V1': np.random.choice(pool, 1000000)
}) # 查看内存使用情况
df.memory_usage(deep=True)

图5  

  这种时候我们可以使用到pandas数据类型中的类别型来极大程度上减小内存消耗:

df['V1'] = df['V1'].astype('category')
df.memory_usage(deep=True)

图6  

  可以看到,转换类型之后内存消耗减少了将近98.3%!

2.4 pandas中的object类型陷阱

  在日常使用pandas处理数据的过程中,经常会遇到object这种数据类型,很多初学者都会把它视为字符串,事实上objectpandas中可以代表不确定的数据类型,即类型为objectSeries中可以混杂着多种数据类型:

s = pd.Series(['111100', '111100', 111100, '111100'])
s

图7

  查看类型分布:

s.apply(lambda s: type(s))

图8

  这种情况下,如果贸然当作字符串列来处理,对应的无法处理的元素只会变成缺失值而不报错,给我们的分析过程带来隐患:

s.str.replace('00', '11')

图9

  这种时候就一定要先转成对应的类型,再执行相应的方法:

s.astype('str').str.replace('00', '11')

图10

2.5 快速判断每一列是否有缺失值

  在pandas中我们可以对单个Series查看hanans属性来了解其是否包含缺失值,而结合apply(),我们就可以快速查看整个数据框中哪些列含有缺失值:

df = pd.DataFrame({
'V1': [1, 2, None, 4],
'V2': [1, 2, 3, 4],
'V3': [None, 1, 2, 3]
}) df.apply(lambda s: s.hasnans)

图11

2.6 使用rank()计算排名时的五种策略

  在pandas中我们可以利用rank()方法计算某一列数据对应的排名信息,但在rank()中有参数method来控制具体的结果计算策略,有以下5种策略,在具体使用的时候要根据需要灵活选择:

  • average

  在average策略下,相同数值的元素的排名是其内部排名的均值:

s = pd.Series([1, 2, 2, 2, 3, 4, 4, 5, 6])
s.rank(method='average')

图12

  • min

  在min策略下,相同元素的排名为其内部排名的最小值:

s.rank(method='min')

图13

  • max

  max策略与min正好相反,取的是相同元素内部排名的最大值:

s.rank(method='max')

图14

  • dense

  在dense策略下,相当于对序列去重后进行排名,再将每个元素的排名赋给相同的每个元素,这种方式也是比较贴合实际需求的:

s.rank(method='dense')

图15

  • first

  在first策略下,当多个元素相同时,会根据这些相同元素在实际Series中的顺序分配排名:

s = pd.Series([2, 2, 2, 1, 3])
s.rank(method='first')

图16


  关于pandas还有很多实用的小知识,以后会慢慢给大家不定期分享~欢迎在评论区与我进行讨论

6个冷门但实用的pandas知识点的更多相关文章

  1. Python数据分析--Pandas知识点(三)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) Python数据分析--Pandas知识点(二) 下面将是在知识点一, ...

  2. Python数据分析--Pandas知识点(二)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘. Python数据分析--Pandas知识点(一) 下面将是在知识点一的基础上继续总结. 13. 简单计算 新建一个数据表 ...

  3. pandas知识点脑图汇总

    参考文献: [1]Pandas知识点脑图汇总

  4. 机器学习-Pandas 知识点汇总(吐血整理)

    Pandas是一款适用很广的数据处理的组件,如果将来从事机械学习或者数据分析方面的工作,咱们估计70%的时间都是在跟这个框架打交道.那大家可能就有疑问了,心想这个破玩意儿值得花70%的时间吗?咱不是还 ...

  5. 这几个冷门却实用的 Python 库,我爱了!

  6. 盘点 php 里面那些冷门又实用的小技巧

    1.实用某个字段索引二维数组 取出一个数组的一个字段的值的数组,我们可以使用 array_column, 这个方法还有另外一个用法,如 array_column($array, null, 'key' ...

  7. Python数据分析--Pandas知识点(一)

    本文主要是总结学习pandas过程中用到的函数和方法, 在此记录, 防止遗忘 1. 重复值的处理 利用drop_duplicates()函数删除数据表中重复多余的记录, 比如删除重复多余的ID. im ...

  8. Python之Pandas知识点

    很多人都分不清Numpy,Scipy,pandas三个库的区别. 在这里简单分别一下: NumPy:数学计算库,以矩阵为基础的数学计算模块,包括基本的四则运行,方程式以及其他方面的计算什么的,纯数学: ...

  9. pandas知识点汇总

    ## pandas基础知识汇总 1.时间序列 import pandas as pd import numpy as np import matplotlib.pyplot as plt from d ...

随机推荐

  1. 搞 Java 的年薪 40W 是什么水平?

    文章首发于[陈树义的博客],点击跳转到原文https://www.cnblogs.com/chanshuyi/p/how_to_earn_400_thousand_per_year.html 我 20 ...

  2. Spring Boot学习(三)解析 Spring Boot 项目

    一.解析 pom.xml 文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=& ...

  3. 刷题[BJDCTF 2nd]简单注入

    解题思路 打开发现登陆框,随机输入一些,发现有waf,然后回显都是同样的字符串.fuzz一波,发现禁了挺多东西的. select union 等 这里猜测是布尔盲注,错误的话显示的是:You konw ...

  4. ubuntu 开启samba

    sudo apt-get update sudo apt-get install samba samba-common sudo mkdir /home/vagrant/share sudo chmo ...

  5. DVWA SQL-injection 附python脚本

    SQL-Injection low等级 首先我们将dvwa等级调到low 如图 接下来选择SQL Injection,并在提交框中输入正常值1,查看返回结果 接下来检测是否存在注入,分别输入 1' a ...

  6. Processing 网格纹理制作(棋盘格)使用pixel() set()像素点绘制方式

    接上 我们趁热打铁,紧接上一回的棋盘格绘制,来挖掘一些不同绘制思路,使用pixel()函数来绘画.这是一个以每个像素点作为对象来绘制的思路,而不是以图形的方式来填充.这就改变了绘画思路.实际上,Pro ...

  7. 操作系统:x86下内存分页机制 (1)

    前置知识: 分段的概念(当然手写过肯定是坠吼的 为什么要分页 当我们写程序的时候,总是倾向于把一个完整的程序分成最基本的数据段,代码段,栈段.并且普通的分段机制就是在进程所属的LDT中把每一个段给标识 ...

  8. 094 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 02 static关键字 04 static关键字(续)

    094 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 ...

  9. 041 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 03 案例演示while循环的使用——求1到5的累加和

    041 01 Android 零基础入门 01 Java基础语法 05 Java流程控制之循环结构 03 案例演示while循环的使用--求1到5的累加和 本文知识点:案例演示while循环的使用1 ...

  10. Sticks(UVA - 307)【DFS+剪枝】

    Sticks(UVA - 307) 题目链接 算法 DFS+剪枝 1.这道题题意就是说原本有一些等长的木棍,后来把它们切割,切割成一个个最长为50单位长度的小木棍,现在想让你把它们组合成一个个等长的大 ...