Learn From:

Pytroch 官方Tutorials

Pytorch 官方文档

环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展

#%%
#%%
# 1.Loading and normalizing CIFAR10 import torch
import torchvision
import torchvision.transforms as transforms batch_size = 16 transform = transforms.Compose( [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] )
# 对图像的预处理,用在加载数据时,当作函数传给transform参数 trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') #%%
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
print( npimg.shape )
plt.imshow(np.transpose(npimg, (1, 2, 0)))
print( np.transpose( npimg, (1, 2, 0) ).shape )
plt.show()
# get some random training images
dataiter = iter(trainloader)
# images torch.Size([16, 3, 32, 32]). labels torch.Size([16])
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size))) #%%
# 2.Define a Convolutional Neural Network import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = nn.DataParallel(net) # 多GPU
net.to(device) #GPU #%%
# 3.Define a Loss Function and optimizer import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) #%%
# 4.Train the network for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data # torch.Size([16, 3, 32, 32])
# GPU
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step() running_loss += loss.item()
if i % 500 == 499:
print('[%d ,%5d] loss: %.3f' %
(epoch+1, i+1, running_loss/2000))
running_loss = 0.0
print("Finished Training")
# save trained model:
PATH = 'cifar_net.pth'
torch.save(net.module.state_dict(), PATH)
# 这样保存到模型就可以在CPU下运行 #%%
# 5.Test the network on the test data
# 为了练习多GPU训练模型,单CPU环境测试、运行模型,以下测试都是CPU的使用方法
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ',
''.join('%5s' % classes[labels[j]] for j in range(batch_size))) net = Net()
net.load_state_dict(torch.load(PATH)) # 加载 CPU模型
# 输出的是能量能量越大的 是这个类的可能性越大
outputs = net(images)
# 按行取最大值
_, predicted = torch.max(outputs, 1)
print('Predicted: ',
''.join('%5s' % classes[predicted[j]] for j in range(batch_size))) # Let us look at how the network performs on the whole dataset
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
# GPU
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%'
% (100 * correct / total)) # what are the classes that performed well,
# and the classes that did not perform well
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(batch_size):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1 for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))

结果:





[深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)的更多相关文章

  1. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  2. 小白学习之pytorch框架(1)-torch.nn.Module+squeeze(unsqueeze)

    我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的 可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个 ...

  3. [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)

    一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...

  4. Torch7学习笔记(二)nn Package

    神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量: ...

  5. [深度学习] pytorch学习笔记(4)(Module类、实现Flatten类、Module类作用、数据增强)

    一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch ...

  6. [深度学习] pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)

    一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使 ...

  7. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  8. PyTorch里面的torch.nn.Parameter()

    在刷官方Tutorial的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),看了官方教程里面的解释也是云里雾里, ...

  9. vue学习指南:第十二篇(详细) - Vue的 路由 第二篇 ( 路由按需加载(懒加载))

    各位朋友 因 最近工作繁忙,小编停更了一段时间,快过年了,小编祝愿 大家 事业有成 学业有成 快乐健康 2020开心过好每一天.从今天开始 我会抽时间把 Vue 的知识点补充完整,以及后期会带给大家更 ...

随机推荐

  1. 初识:LevelDB

    初识:LevelDB 上篇文章缘起:BigTable可以说是已经把论文Bigtable: A Distributed Storage System for Structured Data中的内容掰扯的 ...

  2. 计算机网络学习socket--day2

    1.TCP客户/服务器模型(C/S) 2.回射客户/服务器模型 3.socket.bind.listen.accept.connect ||------------------------------ ...

  3. Web Scraping using Python Scrapy_BS4 - Introduction

    What is Web Scraping This is also referred to as web harvesting and web data extraction. This is the ...

  4. Dresdon简介

    很久没有写文章了.这几年经历了很多事情:离开VMware的不舍,拿到融资的开心,重回VMware的亲切,以及不再争强好胜,只做自己喜欢事情的平和. 可以说,我是幸运的:我这一辈子都在选择,而不是被迫接 ...

  5. 重磅分享:美团点评架构师私藏的内部Linux运维笔记

    最近不少小伙伴后台联系,希望能弄一些大厂的学习资料,我这边费了很大劲,联系到老朋友,原美团点评架构师张sir,问他要了些美团点评架构的内部资料. 这份资料含金量非常高,包含整个美团点评架构架构图,Li ...

  6. iOS倒计时button闪烁

    v _button.titleLabel.text = [NSString stringWithFormat:@"%d后重发",t]; [_button setTitle:[NSS ...

  7. 学Python入门应该先学什么?看完本文你就知道了

    学Python应先从Python开发基础部分入手:1.如学习Python语言介绍2.环境安装3.Python基本语法4.基本数据类型5.二进制运算6.来流程控制.7.字符编码.文件处理8.数据类型9. ...

  8. 01 . RPC简介原理及用Go实现一个简单的RCP

    RPC简介 本地过程调用 // 正常情况下程序的执行和调用情况.例如有如下go语言代码: package main import "fmt" func main() { var a ...

  9. 【Django组件】WebSocket的简单实现

    1:HTML: <!DOCTYPE html><html lang="en"><head> <meta charset="UTF ...

  10. 常用mongo使用方式(限本人)

    mongoose连接详情参考官网 在项目中新建db文件夹 connect.js连接mongo: const mongoose=require('mongoose'); mongoose.connect ...