Learn From:

Pytroch 官方Tutorials

Pytorch 官方文档

环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展

#%%
#%%
# 1.Loading and normalizing CIFAR10 import torch
import torchvision
import torchvision.transforms as transforms batch_size = 16 transform = transforms.Compose( [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] )
# 对图像的预处理,用在加载数据时,当作函数传给transform参数 trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') #%%
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
print( npimg.shape )
plt.imshow(np.transpose(npimg, (1, 2, 0)))
print( np.transpose( npimg, (1, 2, 0) ).shape )
plt.show()
# get some random training images
dataiter = iter(trainloader)
# images torch.Size([16, 3, 32, 32]). labels torch.Size([16])
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size))) #%%
# 2.Define a Convolutional Neural Network import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = nn.DataParallel(net) # 多GPU
net.to(device) #GPU #%%
# 3.Define a Loss Function and optimizer import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) #%%
# 4.Train the network for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data # torch.Size([16, 3, 32, 32])
# GPU
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step() running_loss += loss.item()
if i % 500 == 499:
print('[%d ,%5d] loss: %.3f' %
(epoch+1, i+1, running_loss/2000))
running_loss = 0.0
print("Finished Training")
# save trained model:
PATH = 'cifar_net.pth'
torch.save(net.module.state_dict(), PATH)
# 这样保存到模型就可以在CPU下运行 #%%
# 5.Test the network on the test data
# 为了练习多GPU训练模型,单CPU环境测试、运行模型,以下测试都是CPU的使用方法
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ',
''.join('%5s' % classes[labels[j]] for j in range(batch_size))) net = Net()
net.load_state_dict(torch.load(PATH)) # 加载 CPU模型
# 输出的是能量能量越大的 是这个类的可能性越大
outputs = net(images)
# 按行取最大值
_, predicted = torch.max(outputs, 1)
print('Predicted: ',
''.join('%5s' % classes[predicted[j]] for j in range(batch_size))) # Let us look at how the network performs on the whole dataset
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
# GPU
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%'
% (100 * correct / total)) # what are the classes that performed well,
# and the classes that did not perform well
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(batch_size):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1 for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))

结果:





[深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法)的更多相关文章

  1. [深度学习] Pytorch学习(一)—— torch tensor

    [深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% im ...

  2. 小白学习之pytorch框架(1)-torch.nn.Module+squeeze(unsqueeze)

    我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的 可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个 ...

  3. [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)

    一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...

  4. Torch7学习笔记(二)nn Package

    神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量: ...

  5. [深度学习] pytorch学习笔记(4)(Module类、实现Flatten类、Module类作用、数据增强)

    一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch ...

  6. [深度学习] pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)

    一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使 ...

  7. [深度学习] pytorch学习笔记(1)(数据类型、基础使用、自动求导、矩阵操作、维度变换、广播、拼接拆分、基本运算、范数、argmax、矩阵比较、where、gather)

    一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvisio ...

  8. PyTorch里面的torch.nn.Parameter()

    在刷官方Tutorial的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),看了官方教程里面的解释也是云里雾里, ...

  9. vue学习指南:第十二篇(详细) - Vue的 路由 第二篇 ( 路由按需加载(懒加载))

    各位朋友 因 最近工作繁忙,小编停更了一段时间,快过年了,小编祝愿 大家 事业有成 学业有成 快乐健康 2020开心过好每一天.从今天开始 我会抽时间把 Vue 的知识点补充完整,以及后期会带给大家更 ...

随机推荐

  1. Tableau如何嵌入HTML

    原文地址:https://blog.csdn.net/read_you2011/article/details/81476108 作者:read_you2011 说明 作为领先的数据可视化工具,Tab ...

  2. maven自动创建项目目录骨架

    方法一: 1:打开命令窗口 在要创建项目的路径下按住H2SIT ,然后点击右键  ,在弹出菜单中选择 在此处打开命令窗口(W) 2:目录创建 方法二:

  3. void operator()()的功能

    在学习多线程的时候看到这样的一段代码,为什么要重载()呢?真有这个必要吗? #include <iostream> #include <thread> class Counte ...

  4. JAVA学习过程中遇到的BUG

    Java异常 1.NullPointException java.lang.NullPointException,就是我们经常遇到的空指针异常. java是没有指针的,这里说的"java指针 ...

  5. vue : 本地调试跨域问题的解决办法:proxyTable

    本来我是不想写的,但为了加深印象还是写一写吧. ./config/index.js module.exports = { dev: { // Paths assetsSubDirectory: 'st ...

  6. 消除win10桌面图标的右下方小箭头

    很容易的小东西,在这里简单提一下 新建一个记事本,写下以下代码,改为.bat后缀,双击运行,然后箭头消失 reg add "HKEY_LOCAL_MACHINE\SOFTWARE\Micro ...

  7. 不是吧,阿sir,2020年程序员要不好过?

    自从网传程序员到了35岁之后必须要转行,现在又有人传言:“疫情之下,程序员今年要过苦日子了,降薪裁员是大趋势.” 不是,我就不明白了,你们怎么就看不得程序员好呢?天天巴望着程序员降薪.转行.裁员…   ...

  8. java 手机号码归属地查询

    下面是利用第三方接口实现手机号码归属地查询 (复制请标明出处或留言) package com.test.yyc; import java.io.BufferedReader; import java. ...

  9. 关于IDEA的一些快捷键操作

    shift+F6修改实体类中的属性会重构代码

  10. .net core 发布程序命令(自带运行环境)

    dotnet publish -c Release -r linux-x64 --self-contained true