下面是一个list,可以详细看一下

image_classification = [
['name','top1_acc','top5_acc','size'],
['FixEfficientNet-L2',88.5,98.7,480],
['NoisyStudent/EfficientNet-L2',88.4,98.7,480],
['BiT-L/ResNet',87.54,98.46,-1],
['FixEfficientNet-B7',87.1,98.2,66],
['NoisyStudent/EfficientNet-B7',86.9,98.1,66],
['FixEfficientNet-B6',86.7,98,43],
['FixResNeXt-101 32*48d',86.4,98.0,829],
['NoisyStudent/EfficientNet-B6',86.4,97.9,43],
['FixEfficientNet-B5',86.4,97.9,30],
['NoisyStudent/EfficientNet-B5',86.1,97.8,30],
['FixEfficientNet-B4',85.9,97.7,19],
['KDforAA/EfficientNet-B8',85.8,-1,88],
['FixEfficientNet-B8/MaxUP+CutMix',85.8,-1,87.42],
['FixEfficientNet-B8',85.7,97.6,-1],
['AdvProp/EfficientNet-B8',85.5,97.3,88],
['KDforAA/EfficientNet-B7',85.5,-1,66],
['ResNeXt-101 32*48d',85.4,97.6,829],
['EfficientNet-B8/RandAugment',85.4,-1,-1],
['BiT-M/ResNet',85.39,97.69,928],
['NoisyStudent/EfficientNet-B4',85.3,97.5,19],
['AdvProp/EfficientNet-B7',85.2,97.2,66],
['ResNeXt-101 32*32d',85.1,97.5,466],
['FixEfficientNet-B3',85,97.4,12],
['EfficientNet-B7',85,-1,-1],
['ResNeSt-269',84.5,-1,-1],
['EfficientNet-B7',84.4,97.1,66],
['GPIPE',84.4,97,557],
['ResNeXt-101 32*16d',84.2,97.2,194],
['AssembelResNet152', 84.2,-1,-1],
['ResNeXt-101 32*8d/Semi-weakly sup',84.3,97.2,88],
['TResNet-XL',84.3,-1,77],
['ResNeXt-101 32*16d/semi-weakly sup',84.8,97.4,193],
['NoisyStudent/EfficientNet-B3',84.1,96.9,12],
['EfficientNet-B6',84,96.9,43],
['AmoebaNet-A',83.9,96.9,469],
['ResNeSt-200',83.9,-1,-1],
['FixPNASNet-5',83.7,96.9,86.1],
['FixEfficientNet-B2',83.6,96.9,9.2],
['MultiGrainPNASNet(500px)',83.6,96.7,-1],
['ResNeXt-101 32*4d(semi-weakly sup)',83.4,96.8,42],
['EfficientNet-B5',83.3,96.7,30],
['MultiGrainSENet154(450px)',83.2,-1,-1],
['MultiGrainPNASNet154(450px)',83.1,-1,-1],
['MultiGrainSENet154(400px)',83.0,96.5,-1],
['ResNeSt-101',83,-1,-1],
['Oct-ResNet-152(SE)',82.9,96.3,67],
['PNASNet-5',82.9,96.2,86.1],
['NASNET-A',82.7,96.2,88.9],
['MultiGrainSENet154(500px)',82.7,-1,-1],
['Harm-SE-RNX-101 64*4d',82.66,96.29,88.2],
['FixEfficientNet-B1',82.6,96.5,7.8],
['EfficientNet-B4',82.6,96.3,19],
['MultiGrainPNASNet(400px)',82.6,-1,-1],
['FixResNet-50 Billon',82.5,96.6,-1],
['NoisyStudent(EfficientNet-B2)',82.4,96.3,9.2],
['SCARLET-A4',82.3,96,27.8],
['ResNeXt-101 32*8d',82.2,96.4,88],
['AOGNet-40M-AN',81.87,95.74,-1],
['ResNeXt-101 (cutmix)',81.53,94.97,-1],
['NoisyStudent(EfficientNet-B1)',81.5,95.8,7.8],
['PyConvResNet101',81.49,95.72,42.3],
['DPN-131(320*320)',81.38,95.77,80],
['MultiGrainPNASNet(300px)',81.3,-1,-1],
['DPN-98',81.28,95.6,-1],
['Res2Net-101',81.23,94.43,-1],
['ResNet-50',81.2,-1,-1],
['EfficientNet-B3',81.1,95.5,12],
['DPN-98(320*320)',81.06,95.56,-1],
['DPN-92',80.96,95.47,-1],
['ResNeXt-101 64*4',80.9,95.6,83.6],
['ResNet-200(supervised contrastived)',80.8,95.6,-1],
['DPN-92',80.66,95.34,-1],
['ResNeSt-200(fast AA)', 80.6,95.3,-1],
['NAT-M4',80.5,95.2,9.1],
['FixEfficientNet-B0',80.2,95.4,5.3],
['Inception ResNet V2',80.1,95.1,55.8],
['RandWire-WS',80.1,94.8,-1],
['DPN-131',80.07,94.88,80],
['DPN-98',80.07,94.88,-1],
['ScalaNet-152',79.94,94.82,-1],
['ResNet-200',79.9,95.2,-1],
['NAT-M3',79.9,94.9,9.1],
['RegNetY-8.0GF',79.9,-1,39.2],
['Modified Aligned Xception',79.81,94.83,-1],
['SKNet-101',79.81,-1,48.9],
['CSPResNeXt-50(Mish+Aug)',79.8,95.2,20.5],
['EfficientNet-B2',79.8,94.9,9.2],
['FixResNet-50CutMix',79.8,94.9,-1],
['RegNetY-4.0GF',79.4,-1,20.6],
['LIP-ResNet-101',79.33,94.6,42.9],
['MutiGrain R50-AA-500',79.4,94.8,-1],
['DPN-92',79.27,94.63,-1],
['Xception',79,94.5,22.8],
['MUXNet-xs',66.7,86.8,1.8],
['MobileNetV2',72.56,90.81,3.34],
['MobileNetV3-Large 1.0',75.2,-1,5.4],
['ResNet-50',77.5,-1,29.38],
['ECA/ResNeXt-101',78.6,94.34,42.49],
['Inception V1',69.8,89.9,5],
['MixNet-S',75.8,92.8,4.1],
['MixNet-I',76.6,93.2,4.0],
['MixNet-M',77,93.3,5],
['ResNet-101',78.25,93.95,40],
]

backbone

了解历史Xception, ResNext, 
[VGG,Inception,ResNet, DenseNet, ResNext,Xception,sE,SKnet]
[mobileNetv1,v2,v3,-I-M-S,shufflenet,  ]这些事标杆,模型大小或者精度不比这些更加优秀就不用看了

当前的是efficientnet 还有各种技巧

image classification backbone 汇总分析的更多相关文章

  1. MySQL Server has gone away报错原因汇总分析(转自:http://cenalulu.github.io/mysql/mysql-has-gone-away/)

    原因1. MySQL 服务宕了 判断是否属于这个原因的方法很简单,执行以下命令,查看mysql的运行时长 $ mysql -uroot -p -e "show global status l ...

  2. 系统建设 > 医疗集团CRM系统建设步骤与分析

    概述 医院客户关系管理系统(Customer Relationship Management,简称CRM)是一个完善的“以病人为中心”的管理系统,为集团/医院/总院分院/管理机构提供院前.院中.院后的 ...

  3. 【再探backbone 01】模型-Model

    前言 点保存时候不注意发出来了,有需要的朋友将就看吧,还在更新...... 几个月前学习了一下backbone,这段时间也用了下,感觉之前对backbone的学习很是基础,前几天有个园友问我如何将路由 ...

  4. 《App研发录》知识点汇总

    原文链接:http://www.jianshu.com/p/fc8c4638937e <App研发录>这部书是包建强写的,说来也巧,在读这边书之前在看池建强的<Mac 人生元编程&g ...

  5. 《Unix/Linux日志分析与流量监控》书稿完成

    <Unix/Linux日志分析与流量监控>书稿完成 近日,历时3年创作的75万字书稿已完成,本书紧紧围绕网络安全的主题,对各种Unix/Linux系统及网络服务日志进行了全面系统的讲解,从 ...

  6. 【JDK1.8】JDK1.8集合源码阅读——Set汇总

    一.前言 这一篇里,我将对HashSet.LinkedHashSet.TreeSet进行汇总分析,并不打算一一进行详细介绍,因为JDK对Set的实现进行了取巧.我们都知道Set不允许出现相同的对象,而 ...

  7. Pandas汇总和处理缺失数据

    汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到 ...

  8. ActiveReports 报表控件V12新特性 -- 无需ETL处理,即可实现跨数据源分析数据

    ActiveReports是一款专注于 .NET 平台的报表控件,全面满足 HTML5 / WinForms / ASP.NET / ASP.NET MVC / WPF 等平台下报表设计和开发工作需求 ...

  9. 【独家】K8S漏洞报告|近期bug fix解读&1.11主要bug fix汇总

    内容提要: 1. 高危漏洞CVE-2018-1002105深度解读 2. 11/19--12/11 bug fix汇总分析 3. 1.11重要bug fix解读 4. 1.9重要bug fix解读 在 ...

随机推荐

  1. Viper解析&加载配置

    Viper解析&加载配置 1    Viper是什么 Viper是一个方便Go语言应用程序处理配置信息的库.它可以处理多种格式的配置.它支持的特性: 设置默认值 从JSON.TOML.YAML ...

  2. bzoj3767A+B Problem加强版

    bzoj3767A+B Problem加强版 题意: 求两个数的和,每个数绝对值≤10^(10^7). 题解: 又用Python水过了…… 代码: a=raw_input() b=a.split() ...

  3. Java常用API(Scanner类)

    Java常用API( Scanner类)1 1.Scanner类 首先给大家介绍一下什么是JavaAPI API(Application Programming Interface),应用程序编程接口 ...

  4. 查看进程中占cpu高的线程方法

    当在任务管理器中发现有进程占用cpu过高的时候通过下面的指令将进程快照导出到c盘 jstack -l 进程PID > c:/进程PID.stack  (此命令生成.stack文件在c盘中,用文本 ...

  5. linux $* 和$@例子

    参见ibm网站示例: https://www.ibm.com/developerworks/cn/linux/l-bash-parameters.html 示例: [ian@pinguino ~]$ ...

  6. 没想到 Google 排名第一的编程语言,为什么会这么火?

    没想到吧,Python 又拿第一了! 在 Google 公布的编程语言流行指数中,Python 依旧是全球范围内最受欢迎的技术语言!   01 为什么 Python 会这么火? 核心还是因为企业需要用 ...

  7. bootstrap样式:.clearfix

    我们知道,在静态页面的编写中,清除浮动是一件很繁琐的事情. 所以一般的CSS框架都会有用来清除浮动的样式. 在bootstrap中,这个样式叫 clearfix. 只要在需要清除浮动的元素的父元素加上 ...

  8. css属性inline-block的应用

    1. 让两个块级元素处于同一行 2. 需要元素撑开边框的时候

  9. kotlin中使用Handler

    kotlin中使用Handler jumpToPayHandler = Handler { var questionformModel = QuetionFormModel(2, spinner.te ...

  10. windy数(数位dp)

    https://www.luogu.com.cn/blog/virus2017/shuweidp https://www.luogu.com.cn/problem/P2657 #include < ...