前言

在应用开发的早期,数据量少,开发人员开发功能时更重视功能上的实现,随着生产数据的增长,很多SQL语句开始暴露出性能问题,对生产的影响也越来越大,有时可能这些有问题的SQL就是整个系统性能的瓶颈。

SQL优化一般步骤

1、通过慢查日志等定位那些执行效率较低的SQL语句

2、explain 分析SQL的执行计划

需要重点关注type、rows、filtered、extra。

type由上至下,效率越来越高

  • ALL 全表扫描
  • index 索引全扫描
  • range 索引范围扫描,常用语<,<=,>=,between,in等操作
  • ref 使用非唯一索引扫描或唯一索引前缀扫描,返回单条记录,常出现在关联查询中
  • eq_ref 类似ref,区别在于使用的是唯一索引,使用主键的关联查询
  • const/system 单条记录,系统会把匹配行中的其他列作为常数处理,如主键或唯一索引查询
  • null MySQL不访问任何表或索引,直接返回结果

    虽然上至下,效率越来越高,但是根据cost模型,假设有两个索引idx1(a, b, c),idx2(a, c),SQL为"select * from t where a = 1 and b in (1, 2) order by c";如果走idx1,那么是type为range,如果走idx2,那么type是ref;当需要扫描的行数,使用idx2大约是idx1的5倍以上时,会用idx1,否则会用idx2

Extra

  • Using filesort:MySQL需要额外的一次传递,以找出如何按排序顺序检索行。通过根据联接类型浏览所有行并为所有匹配WHERE子句的行保存排序关键字和行的指针来完成排序。然后关键字被排序,并按排序顺序检索行。
  • Using temporary:使用了临时表保存中间结果,性能特别差,需要重点优化
  • Using index:表示相应的 select 操作中使用了覆盖索引(Coveing Index),避免访问了表的数据行,效率不错!如果同时出现 using where,意味着无法直接通过索引查找来查询到符合条件的数据。
  • Using index condition:MySQL5.6之后新增的ICP,using index condtion就是使用了ICP(索引下推),在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。

3、show profile 分析

了解SQL执行的线程的状态及消耗的时间。

默认是关闭的,开启语句“set profiling = 1;”

SHOW PROFILES ;
SHOW PROFILE FOR QUERY #{id};

4、trace

trace分析优化器如何选择执行计划,通过trace文件能够进一步了解为什么优惠券选择A执行计划而不选择B执行计划。

set optimizer_trace="enabled=on";
set optimizer_trace_max_mem_size=1000000;
select * from information_schema.optimizer_trace;

5、确定问题并采用相应的措施

  • 优化索引
  • 优化SQL语句:修改SQL、IN 查询分段、时间查询分段、基于上一次数据过滤
  • 改用其他实现方式:ES、数仓等
  • 数据碎片处理

场景分析

案例1、最左匹配

索引

KEY `idx_shopid_orderno` (`shop_id`,`order_no`)

SQL语句

select * from _t where orderno=''

查询匹配从左往右匹配,要使用order_no走索引,必须查询条件携带shop_id或者索引(shop_id,order_no)调换前后顺序

案例2、隐式转换

索引

KEY `idx_mobile` (`mobile`)

SQL语句

select * from _user where mobile=12345678901

隐式转换相当于在索引上做运算,会让索引失效。mobile是字符类型,使用了数字,应该使用字符串匹配,否则MySQL会用到隐式替换,导致索引失效。

案例3、大分页

索引

KEY `idx_a_b_c` (`a`, `b`, `c`)

SQL语句

select * from _t where a = 1 and b = 2 order by c desc limit 10000, 10;

对于大分页的场景,可以优先让产品优化需求,如果没有优化的,有如下两种优化方式,

一种是把上一次的最后一条数据,也即上面的c传过来,然后做“c < xxx”处理,但是这种一般需要改接口协议,并不一定可行。

另一种是采用延迟关联的方式进行处理,减少SQL回表,但是要记得索引需要完全覆盖才有效果,SQL改动如下

select t1.* from _t t1, (select id from _t where a = 1 and b = 2 order by c desc limit 10000, 10) t2 where t1.id = t2.id;

案例4、in + order by

索引

KEY `idx_shopid_status_created` (`shop_id`, `order_status`, `created_at`)

SQL语句

select * from _order where shop_id = 1 and order_status in (1, 2, 3) order by created_at desc limit 10

in查询在MySQL底层是通过n*m的方式去搜索,类似union,但是效率比union高。

in查询在进行cost代价计算时(代价 = 元组数 * IO平均值),是通过将in包含的数值,一条条去查询获取元组数的,因此这个计算过程会比较的慢,所以MySQL设置了个临界值(eq_range_index_dive_limit),5.6之后超过这个临界值后该列的cost就不参与计算了。因此会导致执行计划选择不准确。默认是200,即in条件超过了200个数据,会导致in的代价计算存在问题,可能会导致Mysql选择的索引不准确。

处理方式,可以(order_status, created_at)互换前后顺序,并且调整SQL为延迟关联。

案例5、范围查询阻断,后续字段不能走索引

索引

KEY `idx_shopid_created_status` (`shop_id`, `created_at`, `order_status`)

SQL语句

select * from _order where shop_id = 1 and created_at > '2021-01-01 00:00:00' and order_status = 10

范围查询还有“IN、between”

案例6、不等于、不包含不能用到索引的快速搜索。(可以用到ICP)

select * from _order where shop_id=1 and order_status not in (1,2)
select * from _order where shop_id=1 and order_status != 1

在索引上,避免使用NOT、!=、<>、!<、!>、NOT EXISTS、NOT IN、NOT LIKE等

案例7、优化器选择不使用索引的情况

如果要求访问的数据量很小,则优化器还是会选择辅助索引,但是当访问的数据占整个表中数据的蛮大一部分时(一般是20%左右),优化器会选择通过聚集索引来查找数据。

select * from _order where  order_status = 1

查询出所有未支付的订单,一般这种订单是很少的,即使建了索引,也没法使用索引。

案例8、复杂查询

select sum(amt) from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01';
select * from _t where a = 1 and b in (1, 2, 3) and c > '2020-01-01' limit 10;

如果是统计某些数据,可能改用数仓进行解决;

如果是业务上就有那么复杂的查询,可能就不建议继续走SQL了,而是采用其他的方式进行解决,比如使用ES等进行解决。

案例9、asc和desc混用

select * from _t where a=1 order by b desc, c asc

desc 和asc混用时会导致索引失效

案例10、大数据

对于推送业务的数据存储,可能数据量会很大,如果在方案的选择上,最终选择存储在MySQL上,并且做7天等有效期的保存。

那么需要注意,频繁的清理数据,会照成数据碎片,需要联系DBA进行数据碎片处理。

资料

SQL优化这么做就对了的更多相关文章

  1. Sql优化器究竟帮你做了哪些工作

    https://my.oschina.net/u/1859679?tab=newest&catalogId=597012 上一篇,我们介绍了<DB——数据的读取和存储方式>,这篇聊 ...

  2. Sql优化器究竟帮你做了哪些工作?

    关系型数据库的一大优势之一,用户无需关心数据的访问方式,因为这些优化器都帮我们处理好了,但sql查询优化的时候,我不得不要对此进行关注,因为这牵扯到查询性能问题. 有经验的程序员都会对一些sql优化了 ...

  3. 深入了解 TiDB SQL 优化器

    分享嘉宾:张建 PingCAP TiDB优化器与执行引擎技术负责人 编辑整理:Druid中国用户组第6次大数据MeetUp 出品平台:DataFunTalk 导读: 本次报告张老师主要从原理上带大家深 ...

  4. 面试:做过sql优化吗?

    近来面试找工作经常会遇见这种问题: 做过数据库优化吗?大数据量基础过吗?系统反应慢怎么查询? 这咱也没背过啊,面试还老问,现在的网站主要的压力都来自于数据库,频繁的数据库访问经常会使系统瘫痪,这样就需 ...

  5. 系统优化怎么做-SQL优化

    大家好,这里是「聊聊系统优化 」,并在下列地址同步更新 博客园:http://www.cnblogs.com/changsong/ 知乎专栏:https://zhuanlan.zhihu.com/yo ...

  6. SQL 优化总结

    SQL 优化总结 (一)SQL Server 关键的内置表.视图 1. sysobjects         SELECT name as '函数名称',xtype as XType  FROM  s ...

  7. (转)SQL 优化原则

    一.问题的提出 在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用 系统提交实际应用后,随着数据库中数据的增加,系 ...

  8. sql优化阶段性总结以及反思

    Sql优化思路阶段性心得: 这段时间的优化做了好几个案例,其实有很多的类似点,都是好几张大表的相互连接,然后执行长达好几个小时,甚至都跑不出来. 自己差不多的思路就是Parallel full tab ...

  9. 【MySQL】SQL优化系列之 in与range 查询

    首先我们来说下in()这种方式的查询 在<高性能MySQL>里面提及用in这种方式可以有效的替代一定的range查询,提升查询效率,因为在一条索引里面,range字段后面的部分是不生效的. ...

随机推荐

  1. JavaScript中eval的替代方法

    引自:https://www.cnblogs.com/lxg0/p/7805266.html 通常我们在使用ajax获取到后台返回的json数据时,需要使用 eval 这个方法将json字符串转换成对 ...

  2. 网络可视化工具netron详细安装流程

    1.netron 简介 在实际的项目中,经过会遇到各种网络模型,需要我们快速去了解网络结构.如果单纯的去看模型文件,脑海中很难直观的浮现网络的架构. 这时,就可以使用netron可视化工具,可以清晰的 ...

  3. vue3.0 composition API

    一.Setup函数 1.创建时间:组件创建之前被调用,优先与created被调用,this指向的实例为window,created所指向的实例为proxy 2.this指向:不会指向组件实例 3.参数 ...

  4. DP 状态 DP 转移方程 动态规划解题思路

    如何学好动态规划(2) 原创 Gene_Liu LeetCode力扣 今天 算法萌新如何学好动态规划(1) https://mp.weixin.qq.com/s/rhyUb7d8IL8UW1IosoE ...

  5. Linux下unix socket 读写 抓包

    Linux下unix socket 读写 抓包-ubuntuer-ChinaUnix博客 http://blog.chinaunix.net/uid-9950859-id-247877.html

  6. gcc选项 笔记

    gcc –E hello.c –o hello.i   使用gcc的选项"-E" 让gcc在预处理结束后停止编译过程. gcc –S hello.i –o hello.s   &q ...

  7. java 对象之间的复制

    package com.jy.demo.web; import java.util.Date; public class People { private String name;//姓名 priva ...

  8. codeforces 1461D,离线查询是什么神仙方法,为什么快这么多?

    大家好,欢迎来到codeforces专题. 今天我们选择的题目是1461场次的D题,这题全场通过了3702人,从难度上来说比较适中.既没有很难,也很适合同学们练手.另外它用到了一种全新的思想是在我们之 ...

  9. CCF CSP 202009-2 风险人群筛查

    202009-2 风险人群筛查 题目背景 某地疫情爆发后,出于"应检尽检"的原则,我们想要通知所有近期经过改高危区域的居民参与核酸检测. 问题描述 想要找出经过高危区域的居民,分析 ...

  10. docker(1)下载安装for mac

    前言 Docker 提供轻量的虚拟化,你能够从Docker获得一个额外抽象层,你能够在单台机器上运行多个Docker微容器,而每个微容器里都有一个微服务或独立应用,例如你可以将Tomcat运行在一个D ...